首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高寒高海拔隧道保温层敷设方式及设计参数优化
引用本文:王志杰,周飞聪,周平,姜逸帆,李金宜,杜彦良,杜逸文,邓宇航.高寒高海拔隧道保温层敷设方式及设计参数优化[J].中国公路学报,2020,33(8):182-194.
作者姓名:王志杰  周飞聪  周平  姜逸帆  李金宜  杜彦良  杜逸文  邓宇航
作者单位:1. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031;2. 石家庄铁道大学 河北省大型结构健康诊断与控制重点实验室, 河北 石家庄 050043
基金项目:中国工程院咨询项目(2015-XZ-28);国家自然科学基金项目(51678498);中央高校基本科研业务专项资金项目(SWJTU11ZT33);教育部创新团队发展计划项目(IRT0955)
摘    要:为了深入探究高寒隧道保温层敷设方式及其设计参数优化的问题,以高寒高海拔特长珠角拉山隧道工程为背景,通过数值模拟重点研究了保温层敷设方式、设计厚度及导热系数参数的选择,并讨论了当地气温变化与保温层设计参数的关系。研究结果表明:在寒区隧道保温层设防区段,贴壁式敷设方式最佳;随着保温层厚度的增加,洞内冷空气影响范围逐渐减小,调热圈径深随保温层厚度变化的趋势用公式表达为fxh)=3.039e-0.280 9xh+13.8e-0.009 322xh;基于调热圈径深随保温层厚度增加的变化速率曲线及隧道结构安全,建议保温层厚度设计为5~10 cm;随着保温材料导热系数的增大,洞内冷空气影响范围逐渐增大,调热圈径深与导热系数关系趋势用公式表达为fxλ)=15.47e0.287 4xλ-3.829e-39.05xλ;基于调热圈径深随导热系数变化速率曲线及隧道结构安全,建议保温材料导热系数取0.020~0.035 W·(m·K)-1;在假定保温层厚度为5 cm,导热系数为0.022 2 W·(m·K)-1,通风时间4个月的情况下,只有当洞内气温大于-15℃时才能保证支护结构和围岩不受冻害影响。研究成果可为川藏铁路建设提供指导作用。

关 键 词:道路工程  公路隧道  数值模拟  高寒高海拔  保温层  敷设方式  参数优化  
收稿时间:2019-03-18

Laying Method and Design Parameter Optimization of the Thermal Insulation Layer in Alpine and Altitude Tunnels
WANG Zhi-jie,ZHOU Fei-cong,ZHOU Ping,JIANG Yi-fan,LI Jin-yi,DU Yan-liang,DU Yi-wen,DENG Yu-hang.Laying Method and Design Parameter Optimization of the Thermal Insulation Layer in Alpine and Altitude Tunnels[J].China Journal of Highway and Transport,2020,33(8):182-194.
Authors:WANG Zhi-jie  ZHOU Fei-cong  ZHOU Ping  JIANG Yi-fan  LI Jin-yi  DU Yan-liang  DU Yi-wen  DENG Yu-hang
Institution:1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;2. Structural Health Monitoring and Control Key Laboratory of Hebei Province, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China
Abstract:To study the laying method and design parameters of the thermal insulation layer in alpine tunnels, the laying method, design thickness, and thermal conductivity of thermal insulation layers were thoroughly studied through numerical simulation, and the relationship between local temperature change and the design parameters of the thermal insulation layer were discussed. The results show that the wall-mounted laying method is the best in the insulation layer fortified section of the tunnel in cold regions. With increased insulation layer thickness, the influence range of cold air in the tunnel decreases. The trend of the diameter depth of the heat regulating ring changing with the insulation layer thickness is expressed as follows:f(xh)=3.039e-0.280 9xh+13.8e-0.009 322xh. Based on the change rate curve of the diameter depth of the heat regulating ring with an increased insulation layer thickness and tunnel structure safety, it is suggested that the insulation layer thickness should be designed to be between 5 and 10 cm. With increased thermal conductivity of the insulation material, the cold air influence range in the tunnel increases. The relationship trend between the diameter depth of the heat regulating ring and the thermal conductivity is expressed as follows: f(xλ)=15.47e0.287 4xλ-3.829e-39.05xλ. Based on the rate curve of the diameter change and heat regulating ring depth with thermal conductivity and tunnel structure safety, it is suggested that the thermal conductivity of thermal insulation materials should be between 0.020 and 0.035 W·(m·K)-1. Under an assumed thickness of a 5 cm thermal insulation layer, a thermal conductivity of 0.022 2 W·(m·K)-1, and a ventilation time of 4 months, only when the tunnel temperature is higher than -15℃, can the supporting structure and surrounding rock be protected from freezing damage. The research results can provide safety guidance for the Sichuan-Tibet Railway.
Keywords:road engineering  highway tunnel  numerical simulation  alpine and high altitude  insulation layer  laying method  parameter optimization  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号