首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的高速公路意外事件检测模型
引用本文:陈斌. 基于支持向量机的高速公路意外事件检测模型[J]. 中国公路学报, 2006, 19(6): 107-112
作者姓名:陈斌
作者单位:四川交通职业技术学院,交通运输与安全研究所,四川,成都,611130
摘    要:为建立快速高效的高速公路意外事件自动检测系统,提高意外事件救援效率,就高速公路意外事件检测中的关键技术进行了研究。在剖析现有模型特征的基础上,引入支持向量机理论,建立了基于支持向量机的高速公路意外事件检测模型。利用自主开发的EAD-Simulations系统所建立的数据库,对模型进行了仿真试验,分析了不同核函数对检测性能的影响,研究了单侧输入与双侧输入、不同输入特征因素组合的性能指标。结果表明:与California 8#算法相比,该模型检测率提高了179%,误检率降低至0.50%,平均检测时间缩短了81%;同时得到了上游占有率与流率组合的最优输入特征。

关 键 词:交通工程  意外事件检测模型  支持向量机  检测性能  核函数
文章编号:1001-7372(2006)06-0107-06
收稿时间:2006-01-14
修稿时间:2006-01-14

Freeway Accident Detection Model Based on Support Vector Machine
CHEN Bin. Freeway Accident Detection Model Based on Support Vector Machine[J]. China Journal of Highway and Transport, 2006, 19(6): 107-112
Authors:CHEN Bin
Affiliation:Institute of Transportation and Safety, Sichuan Vocational and Technical College of Communications, Chengdu 611130, Sichuan, China
Abstract:The key technology of freeway accident detection was studied in order to set up a quick and efficient accident detection system and promote the efficiency of accident rescue.On the basis of characteristic analysis of the existing models,the freeway accident detection model based on support vector machine(SVM) theory was put forward.With database established by self-developed EAD-Simulations system,a simulation experiment was applied to the model.The effects of different kernel functions on detection performance were analyzed and the performance indexes,such as upstream input,upstream and downstream input and different input of features combination were studied.The results show that the excellent performances of the model are demonstrated by contrast with California 8~# model.The detection rate raises 179%;error detection rate drops at 0.50% and average detection time cuts down 81%.In addition,the optimal input characteristic combined by occupancy and flow rate in upstream is received.
Keywords:traffic engineering  accident detection model  support vector machine  detection performance  kernel function
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号