首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的物流配送中心选址决策
引用本文:龚艳冰,陈森发. 基于支持向量机的物流配送中心选址决策[J]. 公路交通科技, 2007, 24(2): 140-142,154
作者姓名:龚艳冰  陈森发
作者单位:东南大学,系统工程研究所,江苏,南京,210096
摘    要:建立了选址决策的模糊评价矩阵,应用支持向量机方法(SVM)来处理数据,进行物流配送中心的选址决策。支持向量回归机根据所提供的数据,通过学习和训练,找出输入与输出的内在联系,从而求取问题的解,而不是根据经验知识,因而具有自适应功能,能弱化指标权重确定中人为因素的影响。与传统方法相比较,有较好的泛化能力,能较客观地对多个选址方案的优劣进行评价。最后,引用实例说明利用支持向量回归机完成评价工作的全部步骤。

关 键 词:配送中心  选址  支持向量机  支持向量回归机
文章编号:1002-0268(2007)02-0140-03
修稿时间:2005-09-23

Distribution Centers Site Selection Based on Support Vector Machine
GONG Yan-bing,CHEN Sen-fa. Distribution Centers Site Selection Based on Support Vector Machine[J]. Journal of Highway and Transportation Research and Development, 2007, 24(2): 140-142,154
Authors:GONG Yan-bing  CHEN Sen-fa
Affiliation:Southeast University, Institute of Systems Engineering, Jiangsu Nanjing 210096, China
Abstract:A new distribution centers site selection method is proposed,using support vector machine(SVM),where the data derived from a fuzzy appraisal matrix is processed.By learning and training,we use the data of this subset to get the solution and find interrelationship of input and output by the support vector regression machine.This method has the advantage of self adaptability to weaken the human factors in fixing weight index.The new method has better extensive capability than traditional methods.It can make the site selection in an objective manner and avoid the bias brought up by traditional methods.Practical examples are cited in this paper to illustrate the process.
Keywords:distribution center  site selection  support vector machine  support vector regression machine
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号