首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lateral Stability of Towed Flexible Vehicles
Authors:Jeries ABOU-HANNA  Charles R EVCES  James L HILL
Institution:  a Department of Mechanical Engineering, Bradley University, Peoria, Illinois b Department of Engineering Mechanics, The University of Alabama,
Abstract:The highway transport of mobile homes is a matter of concern for the increasingly safety-minded driving public. The low speeds of towed vehicles necessary to maintain stability, together with the requirements for excessive lane widths due to clearance for the lateral motion, result in increased likelihood of traffic accidents, impeded traffic flow, and reduced highway capacity. A safe increase in the stable cruising speed, coupled with a decreased amplitude in the pendular motion helps alleviate all three of the aforementioned problems. Energy input at hitch point and lateral forces between the road and tires permit lateral vehicular motions, which occur above a critical speed, to increase in amplitude until possibly a limit cycle or instability is reached. One would expect that structural dynamics could have a pronounced influence on the lateral response of towed vehicles with large and relatively flexible chassis, such as mobile homes. The objective of this research is to determine the influence of chassis structural parameters on the lateral stability of towed flexible bodies during transport. The mass of the towing vehicle is assumed infinitely large, thus eliminating any dynamic interconnection between the towing and towed vehicles. The assumed modes method is used to describe the lateral deflection of the flexible towed vehicle. Results of the study of this model indicate that increase in structural rigidity of towed vehicle increases the critical towing speed whereas increase in the tire cornering coefficient reduces the safe towing speed, which is true only for this simplified model where the dynamic interaction with the towing vehicle is not included.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号