首页 | 本学科首页   官方微博 | 高级检索  
     

基于OBD数据的驾驶人出行模式挖掘
引用本文:马晓磊,姚李亮,沈宣良. 基于OBD数据的驾驶人出行模式挖掘[J]. 交通信息与安全, 2021, 39(2): 70-77. DOI: 10.3963/j.jssn.1674-4861.2021.02.009
作者姓名:马晓磊  姚李亮  沈宣良
作者单位:北京航空航天大学交通科学与工程学院 北京 102206
基金项目:国家重点研发计划项目2018YFB1601600
摘    要:传统的出行模式研究通常依靠问卷调查分析驾驶人出行特征,所得结果易受调查数据主观性影响,针对此问题基于北京市域范围内2个月共计3570辆私家车的车载诊断数据,对驾驶人的不同出行模式进行分析并建模.通过长期采集的车辆各项参数,采用基于密度峰值的聚类算法进行聚类,将不同的驾驶人分为高频出行者、通勤出行者、长距偶发出行者以及危...

关 键 词:交通信息  OBD数据  出行模式  聚类分析  基于密度峰值的聚类算法  多维离散隐马尔可夫模型
收稿时间:2020-12-19

Drivers' Travel Pattern Mining Based on OBD Data
MA Xiaolei,YAO Liliang,SHEN Xuanliang. Drivers' Travel Pattern Mining Based on OBD Data[J]. Journal of Transport Information and Safety, 2021, 39(2): 70-77. DOI: 10.3963/j.jssn.1674-4861.2021.02.009
Authors:MA Xiaolei  YAO Liliang  SHEN Xuanliang
Affiliation:School of Transportation Science and Engineering, Beihang University, Beijing 102206, China
Abstract:The traditional travel pattern research mainly relies on questionnaires to analyze the driver's travel characteristics, the result of which is not objective. In order to solve the problem, the study analyzed and identifieddifferentdrivers' travel patterns based on the vehicle on-board diagnosticdata from 3 570 private cars in Beijing within two months. According to the parameters recorded from vehicles, a clustering algorithm called Clustering by Fast Search and Find of Density Peaks was used to classify different drivers into high-frequency travelers, commuting travelers, long-distance and occasional travelers and dangerous travelers, and analyzed from the aspects of average travel distance, travel frequency, travel time and dangerous driving behavior times of 100 km, to reflect the variability and regularity of driver's travel pattern. According to the clustering result, the multi-dimensional discrete Hidden Markov Model was used for modeling and measurement. Results indicate that the algorithm proposed shows good accuracy on the identification of drivers' travel patterns. For different kinds of drivers, the averagecorrect recognition rate exceed 91% while the highest recognition rete can reach 94.5%. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通信息与安全》浏览原始摘要信息
点击此处可从《交通信息与安全》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号