首页 | 本学科首页   官方微博 | 高级检索  
     

基于UPF的神经网络辅助机动目标跟踪
引用本文:俞国庆,刘忠,刘晓. 基于UPF的神经网络辅助机动目标跟踪[J]. 舰船电子工程, 2009, 29(12): 49-51,76
作者姓名:俞国庆  刘忠  刘晓
作者单位:海军工程大学电子工程学院,武汉,430033
摘    要:为提高机动目标跟踪性能,提出了一种神经网络辅助下的滤波方法。基于Unscented卡尔曼滤波方法,Unscented粒子滤波器(UPF)能够产生较准确的建议密度分布,因此相对于其它蒙特卡洛方法,UPF能够获得对非线性目标跟踪问题更好的近似。利用目标的机动特征建立和训练神经网络,将神经网络的输出作为加速度控制参数,用于修正目标的运动模型。仿真结果表明,与扩展卡尔曼滤波相比,神经网络辅助下的UPF具有更好的跟踪性能。

关 键 词:目标跟踪  粒子滤波  神经网络

Maneuvering Target Tracking Based on Unscented Particle Filter Aided by Neutral Network
Yu Guoqing,Liu Zhong,Liu Xiao. Maneuvering Target Tracking Based on Unscented Particle Filter Aided by Neutral Network[J]. Ship Electronic Engineering, 2009, 29(12): 49-51,76
Authors:Yu Guoqing  Liu Zhong  Liu Xiao
Affiliation:Yu Guoqing Liu Zhong Liu Xiao (Electronics Engineering College, Naval University of Engineering, Wuhan 430033)
Abstract:A filtering method aided by neural network to improve the maneuvering target tracking performance is proposed. Based on unscented Kalman filter, the unscented particle filter (UPF) has more accurate proposal distribution and better approximation to non-linear tracking problem than other Sequential Monte-Carlo methods. The neural network is constructed and trained by the maneuvering features, and the outputs of NN are used as acceleration control parameters to correct model parameters. Simulation results show the performance of UPF aided by NN is much improved than extensive Kalman filter.
Keywords:target tracking   particle filtering   neural networks
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号