首页 | 本学科首页   官方微博 | 高级检索  
     

基于FTA-BN的综合交通枢纽中地铁车站安全风险评价
引用本文:姚诗忆,汪益敏,仇培云,陈嘉诚,农 轲. 基于FTA-BN的综合交通枢纽中地铁车站安全风险评价[J]. 都市快轨交通, 2023, 36(2): 174-182
作者姓名:姚诗忆  汪益敏  仇培云  陈嘉诚  农 轲
作者单位:华南理工大学土木与交通学院;华南理工大学土木与交通学院,华南理工大学亚热带建筑科学国家重点实验室;广州地铁集团有限公司
基金项目:广东省科技计划资助项目(2017A050501005);;亚热带建筑科学国家重点实验室开放基金资助项目(2020ZB25);
摘    要:以综合交通枢纽中的地铁车站安全为研究目标,综合考虑综合交通枢纽中特殊的客流组成和乘客特征,以踩踏、火灾、水灾、公共卫生和大面积滞留5类易发风险事故作为研究对象,基于FTA-BN方法对其影响因素进行分析,识别其风险因素,建立相应的事故树模型,转化为贝叶斯网络模型进行风险评价;引入三角模糊数处理专家自然语言,得到贝叶斯网络中的先验概率和条件概率分布,然后通过贝叶斯网络模型进行网络推理计算和敏感性分析,找出地铁车站中的薄弱部分,制定相应的风险管控措施,从而提高枢纽中地铁车站对于紧急事件的应对能力。以广州南站地铁车站为例进行快速评价,结果表明:广州南站在公共卫生安全方面存在一定危险,发生概率为42.98%,且较易发生大面积滞留事件,可能性为30.40%。

关 键 词:综合交通枢纽  地铁车站  事故树  模糊贝叶斯网络  安全风险评价

Safety Risk Assessment of a Subway Station in an Integrated Transportation Hub Based on FTA-BN
YAO Shiyi,WANG Yimin,Qiu Peiyun,CHEN Jiacheng,NONG Ke. Safety Risk Assessment of a Subway Station in an Integrated Transportation Hub Based on FTA-BN[J]. Urban Rapid Rail Transit, 2023, 36(2): 174-182
Authors:YAO Shiyi  WANG Yimin  Qiu Peiyun  CHEN Jiacheng  NONG Ke
Affiliation:School of Civil Engineering and Transportation, South China University of Technology;School of Civil Engineering and Transportation, South China University of Technology, State Key Lab of Subtropical Building Science, South China University of Technology;Guangzhou Metro Group Co., Ltd.
Abstract:This study considers subway station safety in an integrated transportation hub as the research objective and comprehensively examines the special passenger flow composition and passenger characteristics. Five accident risk-prone types were considered, namely, stampedes, fires, floods, public health, and large-area detention. The study analyzed its influencing factors based on the FTA-BN method, identified the risk factors, and established a corresponding fault tree model, which was later transformed into a Bayesian network model for risk assessment. Prior probability and conditional probability distributions in Bayesian networks were obtained by introducing an expert natural language for triangular fuzzy number processing. Subsequently, the Bayesian network model was used to perform network reasoning calculations and sensitivity analysis. The results helped identify the weak parts of the subway station and formulate corresponding risk control measures to improve the emergency response of the subway station in the hub. The subway station of Guangzhou South Metro Station was considered as an example for rapid evaluation, and the evaluation results showed that the station was prone to a certain amount of risk in terms of public health safety with a probability of 42.98%, and was prone to large-area detention with a probability of 30.40%.
Keywords:integrated transportation hub   subway station   fault tree analysis   Bayesian network   safety risk assessment
点击此处可从《都市快轨交通》浏览原始摘要信息
点击此处可从《都市快轨交通》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号