首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of fuel stratification on initial flame development: Part 3-high swirl condition
Authors:I Y Ohm  C J Park
Institution:1.Department of Mechanical Engineering,Seoul National University of Science and Technology,Seoul,Korea
Abstract:This paper discusses the final investigation into the effect of fuel stratification on flame propagation. In previous works, the characteristics under the no port-generated swirl condition and the low-swirl condition were considered. For this purpose, the initial flame development and propagation were visualized under different axially stratified states in a modified optical single-cylinder SI engine. The images were captured by an intensified CCD camera through the quartz window mounted in the piston. Stratification was controlled by the combination of the port swirl ratio and injection timing. These were averaged and processed to characterize the flame propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance and through the mean absolute deviation of the propagation direction. The results show that the LML is expanded remarkably under the high-swirl cases up to the highest relative AFRs of 1.71 and 1.75 between 140 and 160CA. In addition, similar to the low-swirl condition, the flame-flow interaction determines the direction of flame propagation, and the governing roles of the two factors vary according to the swirl level; the flow is more important at the higher swirl conditions, and the flame is more important at the lower swirl condition. Finally, fast and stable flame propagation can be achieved under the preferably stratified condition, which is induced by the suitable combination of the high swirl and injection timing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号