首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊神经网络的Horn集上的输入归结
引用本文:裴峥,黄天民. 基于模糊神经网络的Horn集上的输入归结[J]. 西南交通大学学报, 2002, 37(5): 565-569
作者姓名:裴峥  黄天民
作者单位:西南交通大学应用数学系,四川,成都,610031
基金项目:国家自然科学基金 (6 0 0 74 0 14 )
摘    要:关于定理机器证明的归结原理已应用到人工智能的很多领域,同时提出了各种改进方法,其中,输入归结是一种非常好的推理方法,它对于Horn集是完备的,模糊神经网络是模糊逻辑与神经网络的融合,文中利用模糊神经网络的知识表示及学习的特点,结合输入归结的优点,进行Horn集上的输入归结。

关 键 词:模糊神经网络 Horn集 模糊逻辑系统 归结原理 输入归结 人工智能 机器证明
文章编号:0258-2724(2002)05-0565-05

Input Resolution on Horn Sets Based on Fuzzy Neural Networks
PEI Zheng,HUANG Tian min. Input Resolution on Horn Sets Based on Fuzzy Neural Networks[J]. Journal of Southwest Jiaotong University, 2002, 37(5): 565-569
Authors:PEI Zheng  HUANG Tian min
Abstract:Resolution principle of automated reasoning has been used in many aspects of artificial intelligence, and many modified methods have been proposed. In the modified methods, input resolution is one of good reasoning methods, and it is complete for Horn sets. Fuzzy neural network is a combination of fuzzy logic and neural networks. In this paper, by using the character of knowledge representation and learning of fuzzy neural networks, input resolution on Horn sets is implemented.
Keywords:logical systems  neural networks  fuzzy  resolution principle  input resolution
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号