首页 | 本学科首页   官方微博 | 高级检索  
     

基于复杂网络的中国出口集装箱运价指数波动规律
引用本文:汤霞,匡海波,郭媛媛,蓝贤钢. 基于复杂网络的中国出口集装箱运价指数波动规律[J]. 交通运输系统工程与信息, 2020, 20(2): 26-32
作者姓名:汤霞  匡海波  郭媛媛  蓝贤钢
作者单位:1. 大连海事大学综合交通运输协同创新中心,辽宁大连 116026; 2. 珠海城市职业技术学院经济管理学院,广东珠海 519000
基金项目:国家自然科学基金重点项目/ Key Program of the National Natural Science Foundation of China(7183000077);国家自然科学基金/National Natural Science Foundation of China(71672016);广东省教育厅科研课题/ Research Project of Guangdong Education Department(2017GkQNCX070).
摘    要:借助符号动力学方法构建中国出口集装箱运价指数(CCFI)波动复杂网络模型,通过分析网络的模态强度及强度分布、加权聚集系数、平均最短路径长度、模态介数等动力学拓扑性质,研究集装箱运价波动的一般规律. 研究发现,集装箱运价波动网络具有小世界网络和无标度网络的特性,集装箱运价波动表现出群簇性、周期性、持续性和渐进性的规律. 波动子群内模态转换周期不超过2 个月,但子群外模态转换平均周期为3.8 个月,集装箱运价群簇性波动通过点强度低介数高的模态进行转换. 基于复杂网络理论的集装箱运价波动规律研究,为政府部门及航运企业加强集装箱运价波动风险的认知与防范提供了一种新视角.

关 键 词:水路运输  波动规律  复杂网络  运价指数  集装箱海运  
收稿时间:2019-08-26

Fluctuation Patterns of China Export Containerized Freight Index Based on Complex Network Theory
TANG Xia,KUANG Hai-bo,GUO Yuan-yuan,LAN Xian-gang. Fluctuation Patterns of China Export Containerized Freight Index Based on Complex Network Theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 26-32
Authors:TANG Xia  KUANG Hai-bo  GUO Yuan-yuan  LAN Xian-gang
Affiliation:1. Collaborative Innovation Center for Transport Studies, Dalian Maritime University, Dalian 116026, Liaoning, China; 2. School of Economics and Management, Zhuhai City Polytechnic, Zhuhai 519000, Guangdong, China
Abstract:This study developed a complex network model for the China Export Containerized Freight Index (CCFI) fluctuation analysis, based on the symbolic dynamic method. The CCFI fluctuation patterns were analyzed by the network dynamic topological properties, such as mode strength, strength distribution, weighted clustering coefficient, average shortest path length, and mode betweenness. The results indicate that the container freight fluctuation network has the small- world and scale- free characteristics. The CCFI fluctuation is characterized by clustering, periodicity, continuity, and graduality. The conversion cycle between linkage modes within the clustering subgroups is less than 2 months, and the average conversion cycle of linkage modes between clustering subgroups lasts 3.8 months. The CCFI clustering fluctuation carries out conversion by the modes with low strength and high betweenness. The CCFI fluctuation pattern study based on complex network theory provides a new perspective for governments and shipping enterprises to understand fluctuation characteristics and reduce risks.
Keywords:waterway transportation  fluctuation patterns  complex network  freight index  container shipping  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号