首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络参数识别法在重庆石板坡大桥中的应用
引用本文:黎曦 顾安邦 乔为国. 神经网络参数识别法在重庆石板坡大桥中的应用[J]. 重庆交通学院学报, 2007, 26(5): 13-16
作者姓名:黎曦 顾安邦 乔为国
作者单位:重庆交通大学土木建筑学院 重庆400074
摘    要:BP神经网络法的自适应学习能力、非线性映射能力、鲁棒性和容错能力以及快速收敛能力可有效解决连续刚构桥施工控制中参数估计的核心问题,通过实例证明,其参数估计结果与实测数据吻合性较好,识别精度较高,有相当的实践意义.尤其是对于必须考虑非线性影响、不确定系统的控制等问题,如果经典算法识别精度低,可考虑采用非经典神经网络算法进行重要参数的识别.

关 键 词:连续刚构桥  施工控制  BP神经网络  参数识别  弹性模量
文章编号:1674-0696(2007)05-0013-04
收稿时间:2006-06-26
修稿时间:2006-07-05

Application of Neural Network Method to Parameters Identification of Shibanpo Bridge in Chongqing
LI Xi, GU An-bang, QIAO Wei-guo. Application of Neural Network Method to Parameters Identification of Shibanpo Bridge in Chongqing[J]. Journal of Chongqing Jiaotong University, 2007, 26(5): 13-16
Authors:LI Xi   GU An-bang   QIAO Wei-guo
Abstract:With the capacity of adaptive self-study,non-linear representation,good robusticity and error tolerance as well as rapid convergence,BP neural network could effectively solve the core problem of parameters identification in the construction of continuous rigid frame bridge.Through the example,a conclusion is drawn that the result of parameters estimation using BP network is very identical with the measure,which has practical significance with satisfactory accuracy.If the accuracy in the classic method is rather low especially in problems with non-linear and uncertain system control and so on,the BP neural network can be used well.
Keywords:continuous rigid frame bridge  construction control  BP neural network  parameters identification  elastic modulus
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号