首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合特征稀疏编码模型的车辆品牌识别方法
引用本文:石鑫,赵池航,张小琴,李彦伟,薛善光,毛迎兵. 基于融合特征稀疏编码模型的车辆品牌识别方法[J]. 筑路机械与施工机械化, 2020, 0(3): 59-63
作者姓名:石鑫  赵池航  张小琴  李彦伟  薛善光  毛迎兵
作者单位:河北交通职业技术学院土木工程系;东南大学交通学院;河北省交通规划设计院公路建设与养护技术、材料及装备交通运输行业研发中心
基金项目:河北省重点研发计划项目(19270802D)。
摘    要:提出了一种基于融合特征稀疏编码模型的车辆品牌识别方法,该方法首先提取车脸图像的方向梯度直方图特征作为融合特征稀疏编码模型的一级特征向量,然后将车脸图像的一级特征向量作为过完备字典中训练样本集的线性组合,并构建非负性约束稀疏编码模型,最后采用重构误差最小原则对车辆品牌进行识别。基于东南大学的车脸数据库进行了试验,结果表明,基于融合特征稀疏编码模型的车辆品牌识别方法优于HOG+SVM、传统稀疏表示和字典学习稀疏表示的车辆品牌识别方法,其平均识别率达到96.16%。理论分析和试验结果表明,基于融合特征稀疏编码模型的车辆品牌识别方法具有较强的鲁棒性和适用性。

关 键 词:融合特征  稀疏编码模型  车脸图像  鲁棒性

Recognition of Vehicle Brands Based on Sparse Coding Model of Fused Features
SHI Xin,ZHAO Chi-hang,ZHANG Xiao-qin,LI Yan-wei,XUE Shan-guang,MAO Ying-bing. Recognition of Vehicle Brands Based on Sparse Coding Model of Fused Features[J]. Road Machinery & Construction Mechanization, 2020, 0(3): 59-63
Authors:SHI Xin  ZHAO Chi-hang  ZHANG Xiao-qin  LI Yan-wei  XUE Shan-guang  MAO Ying-bing
Affiliation:(Department of Civil Engineering,Hebei Jiaotong Vocational and Technical College,Shijiazhuang 050011,Hebei,China;School of Transportation,Southeast University,Nanjing 211189,Jiangsu,China;Research and Development Center of Transport Industry for Technologies,Materials and Equipment of Highway Construction and Maintenance,Hebei Provincial Communications Planning and Design Institute,Shijiazhuang 050011,Hebei,China)
Abstract:A novel recognition method of vehicle brands based on sparse coding model of fused features was proposed.Firstly,histogram of oriented gradient(HOG)of vehicle face image was extracted as the first-level feature vector of sparse coding model of fused features.Secondly,the first-level feature vector of vehicle face image was used as the linear combination of training samples in over-complete dictionary,and a sparse coding model with non-negative constraints was constructed.Finally,the principle of minimum reconstruction was used to identify vehicle brands.The comparative experiments based on vehicle face database of Southeast University were carried out.The results show that the proposed recognition method of vehicle brands based on sparse coding model of fused features is superior to HOG+SVM,traditional sparse representation and dictionary learning sparse representation,and the average recognition rate is 96.16%.Theoretical analysis and experimental results show that the novel recognition method of vehicle brands based on sparse coding model of fused features has strong robustness and applicability.
Keywords:fused feature  sparse coding model  vehicle face image  robustness
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号