首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A static network level model for the information propagation in vehicular ad hoc networks
Institution:1. Information & Control Engineering Faculty, Shenyang Jianzhu University, Shenyang 110168, China;2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;3. School of Information Science & Engineering, Northeastern University, Shenyang 110004, China
Abstract:In this paper, we present a network level model to describe the information propagation in vehicular ad hoc networks (VANETs). The approach utilizes an existing one-dimensional propagation model to evaluate information travel times on the individual arcs of the network. Traffic flow characteristics are evaluated by a static traffic assignment model. Upper and lower bounds are developed for the time of information propagation between two nodes in a network. We show that the bounds yield good (typically within 5%) estimates of the true time lag for the lower penetration rates (<10%), which makes them particularly useful in the initial deployment stages of vehicle-to-vehicle (V2V) communication. Furthermore, our lower bound reveals that – quite surprisingly – for sufficiently low penetration rates, more equipped vehicles on the road does not necessarily promote the fast propagation of information. As an application of the bounds, we formulate a resource allocation model in which communication devices can be installed along roads to promote wireless propagation. A set of efficient heuristic algorithms is developed to solve the resource allocation problem. Numerical results are given throughout.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号