首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new strategy for minimum usage of external yaw moment in vehicle dynamic control system
Institution:1. Automatic Control Laboratory, CINVESTAV-IPN Unidad Guadalajara, 1145 Avenida del Bosque, Zapopan C.P. 45019, Jalisco, México;2. Instituto Tecnológico y de Estudios Superiores de Occidente, ITESO AC, Tlaquepaque, Jalisco, México
Abstract:Due to the loss of vehicle directional stability in emergency maneuvers, a new complete desired model for vehicle handling based on the linear two-degrees-of-freedom (2DOF) model and tire/road conditions is presented to be tracked by the direct yaw moment control (DYC) system. In order to maintain the vehicle actual motions, yaw rate and side-slip angle, close to the proposed desired responses without excessively large external yaw moment, a complete linear quadratic (LQ) optimal problem is formulated and its analytical solution is obtained. Here, the derived control law is evaluated and its different versions are discussed. It is shown that the side-slip tracking by DYC is more effective than the yaw rate control to stabilize vehicle motions in nonlinear regimes. Also, optimal property of the control law provides the possibility of reducing the external yaw moment as low as possible, at the cost of some admissible tracking errors. Simulation studies of vehicle handling, with and without control, have been conducted using a full nonlinear vehicle dynamic model. The results, obtained during various maneuvers, indicate that when the proposed optimal controller is engaged with the model, improvements in the handling performance through a reduced external yaw moment can be acquired.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号