摘 要: | 为了更快、高精度的对舰船机舱火灾温度进行建模和预测,提出基于神经网络的舰船机舱火灾温度快速预测方法。首先分析当前舰船机舱火灾温度的研究进展,指出当前舰船机舱火灾温度预测方法的局限性,然后收集舰船机舱火灾温度的历史数据,通过神经网络对历史数据进行学习和分析,挖掘舰船机舱火灾温度变化特点,建立舰船机舱火灾温度预测模型,并对神经网络参数优化问题进行解决,最后与其他舰船机舱火灾温度方法进行对比实验。结果表明,神经网络的舰船机舱火灾温度预测精度超过90%,远远高于其他舰船机舱火灾温度方法的预测精度,同时减少舰船机舱火灾温度预测建模时间,能够快速对舰船机舱火灾温度进行预测。
|