首页 | 本学科首页   官方微博 | 高级检索  
     

车辆半主动悬架全息最优滑模控制器设计方法
引用本文:陈士安, 王骏骋, 姚明. 车辆半主动悬架全息最优滑模控制器设计方法[J]. 交通运输工程学报, 2016, 16(3): 72-83. doi: 10.19818/j.cnki.1671-1637.2016.03.009
作者姓名:陈士安  王骏骋  姚明
作者单位:1.江苏大学 汽车与交通工程学院,江苏 镇江 212013;;2.浙江水利水电学院 机械与汽车工程学院,浙江 杭州 310018
基金项目:国家自然科学基金项目51575239
摘    要:为使半主动悬架在名义工况下获得尽可能优的使用性能, 保证在变参数/行驶工况下具有良好的鲁棒性, 提出一种车辆半主动悬架全息最优滑模控制器设计方法。基于车辆模型分析了现有最优滑模控制器不能使半主动悬架在名义工况下获得较优性能与在变参数/行驶工况下鲁棒性较差的原因。通过对半主动悬架控制系统状态方程进行扩展, 构建了不丢失任何系统结构与期望性能信息的滑模流形函数, 据此设计了半主动悬架全息最优滑模控制器。通过变参数多工况数值仿真对比了采用现有最优滑模控制器的半主动悬架、采用全息滑模控制器的半主动悬架与被动悬架的性能。分析结果表明: 在名义工况下, 采用全息最优滑模控制器的半主动悬架的综合性能较采用现有最优滑模控制器的半主动悬架与被动悬架的综合性能分别提高了88.30%、38.33%;在变参数工况下, 采用全息最优滑模控制器的半主动悬架、采用现有最优滑模控制器的半主动悬架和被动悬架的综合性能指标的最大波动分别是26.22%、74.42%、46.39%;在变行驶工况下, 采用全息最优滑模控制器的半主动悬架、采用现有最优滑模控制器的半主动悬架和被动悬架的综合性能指标的最大波动分别是78.55%、106.22%、115.06%。可见, 相比于被动悬架与采用现有最优滑模控制器的半主动悬架, 采用全息最优滑模控制器的半主动悬架可获得更好的名义工况使用性能与变工况鲁棒性。

关 键 词:汽车工程   半主动悬架   悬架综合性能   全息最优滑模控制   扩展最优滑模流形函数   鲁棒性
收稿时间:2016-01-20

Design method of holographic optimal sliding mode controller for semi-active suspension of vehicle
CHEN Shi-an, WANG Jun-cheng, YAO Ming. Design method of holographic optimal sliding mode controller for semi-active suspension of vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 72-83. doi: 10.19818/j.cnki.1671-1637.2016.03.009
Authors:CHEN Shi-an  WANG Jun-cheng  YAO Ming
Affiliation:1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China;;2. School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, Zhejiang, China
Abstract:To obtain both better comprehensive performance of semi-active suspension under the nominal running condition and the enhanced robustness under the variation parameters/running condition, a design method of holographic optimal sliding mode (HOSM) controller for the semiactive suspension of vehicle was developed.First, when the current optimal sliding mode (COSM) controller was applied, the poorer reasons of the comprehensive performance of semiactive suspension under the nominal running condition and the robustness under the variation parameters/running condition were analyzed.Second, the state equations of control system for the semi-active suspension were augmented, a sliding mode manifold function considering all ofstructural and expected information of suspension was established, and a novel HOSM controller was designed.Finally, based on the numerical simulation, the control result of the proposed controller was compared with the control result of COSM controller and the performance of passive suspension.Analysis result shows that the comprehensive performance of semi-active suspension controlled by the HOSM controller increases by 88.30% and 38.33% compared with the values of the semi-active suspension controlled by the COSM controller and the passive suspension in the nominal running condition; under the variation parameter condition, the maximum fluctuations of comprehensive performance indexes of the suspensions controlled by the HOSM controller and the COSM controller and the passive suspension are 26.22%, 74.42%, and 46.39%, respectively; under the variation running condition, the maximum fluctuations of comprehensive performance indexes of the suspensions controlled by the HOSM controller and the COSM controller and the passive suspension are 78.55%, 106.22%, and 115.06%, respectively.Therefore, using the HOSM controller can not only achieve better comprehensive performance of semi-active suspension under the nominal running condition, but also achieve better robustness compared with the HOSM controller and the passive suspension.
Keywords:automotive engineering  semi-active suspension  suspension comprehensive performance  holographic optimal sliding mode control  augmented optimal sliding mode manifold function  robustness
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号