摘 要: | 针对铁路异物侵限存在尺度上的外观变化,导致现有目标跟踪算法容易学习到过量背景或局部纹理信息,从而引发跟踪框漂移的问题,提出一种融合尺度估计的核相关滤波目标跟踪算法。利用视觉背景提取器ViBe对铁路沿线侵限异物进行检测,通过密集循环采样和尺度金字塔技术分别提取初始化跟踪框的FHOG特征,用来训练一个核相关位置滤波器和一个PCA降维的尺度滤波器,以实现尺度自适应的铁路侵限异物快速跟踪。实验结果表明:PSA-Kcf算法在跟踪精度上优于无尺度估计环节的生成类算法Mean Shift和原生核相关滤波算法Kcf,略高于尺度自适应的SA-Kcf和SAMF算法;在跟踪速度上明显快于Mean Shift、SA-Kcf和SAMF算法,能达到与Kcf算法相当的快速跟踪效果。
|