首页 | 本学科首页   官方微博 | 高级检索  
     

基于Logistic回归的无砟轨道层间位移预警研究
引用本文:娄小强,何越磊,路宏遥,赵彦旭. 基于Logistic回归的无砟轨道层间位移预警研究[J]. 铁道科学与工程学报, 2021, 18(3): 638-644. DOI: 10.19713/j.cnki.43-1423/u.T20200434
作者姓名:娄小强  何越磊  路宏遥  赵彦旭
作者单位:上海工程技术大学 城市轨道交通学院,上海 201620;中铁二十一局集团有限公司,甘肃 兰州 730070
基金项目:国家自然科学基金资助项目;甘肃省科技计划资助项目;中国铁建科技研发计划项目
摘    要:无砟轨道层间位移是运营期间荷载作用下轨道板与砂浆层产生的离缝宽度,也是影响行车安全与养护维修的关键参数.针对层间位移状态的预警问题,以华东地区某线路无砟轨道为研究对象,基于现场实测数据,以环境温度、太阳辐射、风速、日温差、前4小时太阳辐射量均值、前6小时环境温度均值等气象参数为输入,无砟轨道层间位移值为输出,建立基于L...

关 键 词:高速铁路  无砟轨道  层间位移  Logistic回归  分类预警模型

Research on early warning of interlayer displacement of ballastless track based on Logistic regression
LOU Xiaoqiang,HE Yuelei,LU Hongyao,ZHAO Yanxu. Research on early warning of interlayer displacement of ballastless track based on Logistic regression[J]. Journal of Railway Science and Engineering, 2021, 18(3): 638-644. DOI: 10.19713/j.cnki.43-1423/u.T20200434
Authors:LOU Xiaoqiang  HE Yuelei  LU Hongyao  ZHAO Yanxu
Affiliation:(School of Urban Rail Transportation,Shanghai University of Engineering Science,Shanghai 201620,China;China Railway 21st Bureau Group Co.,Ltd.,Lanzhou 730070,China)
Abstract:The ballastless track interlayer displacement is the width of the gap between the track slab and the mortar layer under load during operation,and is also a key parameter that affects driving safety and maintenance.Aiming at the early-warning problem of the interlayer displacement status,the ballastless track of a line in East China was taken as the research object.Based on the field measurement data,the environmental temperature,solar radiation,wind speed,daily temperature difference,mean solar radiation amount in the first 4 hours,and environment in the first 6 hours,meteorological parameters such as temperature mean value are input,and the ballastless track interlayer displacement value was output.A logistic regression-based early warning model for ballastless track interlayer displacement classification was established.The model was verified by using measured data and compared with the traditional BP neural network model and decision number.The research results are as follows.The accuracy rate of the ballastless track interlayer displacement early warning model is 95.21%.The prediction result is better than the BP neural network 94.33%and the decision number model 95.07%.the results can provide guidance and suggestions for the disease warning and maintenance of the ballastless track structure.
Keywords:high-speed railway  ballastless track  interlayer displacement  Logistic regression  classified early warning model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号