首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征提取和机器学习的异常数据识别算法
作者姓名:赵荣欣  贾鹏飞
基金项目:上海市科委优秀技术带头人项目(20XD1432400)
摘    要:结构健康监测系统的大力发展每天都在产生大量的监测数据。对于结构健康监测系统来说,判断这些产生的监测数据是否正常是对结构健康状态进行分析的第一步,也是关键的一步。同时,监测数据的异常与否也是判断传感器、采集设备、传输设备等是否正常工作的关键性依据。对于一段数据进行识别,判断数据是属于什么样的异常,是一个多分类的问题。采用基于特征提取和机器学习相结合的算法,对时序数据进行分类,能够快速地判断数据是否异常和异常的类型。

关 键 词:结构健康监测  机器学习  异常识别  K近邻算法  多分类
收稿时间:2022-07-27
修稿时间:2022-07-27
点击此处可从《城市道桥与防洪》浏览原始摘要信息
点击此处可从《城市道桥与防洪》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号