首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊支持向量机的变压器故障诊断
引用本文:肖燕彩,张清. 基于模糊支持向量机的变压器故障诊断[J]. 北方交通大学学报, 2012, 0(1): 117-121
作者姓名:肖燕彩  张清
作者单位:北京交通大学机械与电子控制工程学院,北京100044
基金项目:中央高校基本科研业务费专项资金资助(2011JBM092)
摘    要:针对支持向量机对训练样本内的噪声和孤立点比较敏感,影响了支持向量机分类性能的弱点,利用模糊支持向量机的学习方法,构建了变压器故障诊断模型.采取一种基于二叉树的多分类方法,使用模糊C均值聚类算法求取模糊支持向量机的模糊隶属度,采用径向基核函数,并利用遗传算法对模糊支持向量机的参数进行寻优.实验结果表明,基于二叉数的模糊支持向量机模型相比BP神经网络、支持向量机有更高的诊断准确率,基于二叉树模糊支持向量机的变压器故障诊断方法是可行的.

关 键 词:模糊支持向量机  二叉树  故障诊断  模糊C均值聚类算法  遗传优化  变压器

Research of transformer fault diagnosis based on fuzzy support vector machines
XIAO Yancai,ZHANG Qing. Research of transformer fault diagnosis based on fuzzy support vector machines[J]. Journal of Northern Jiaotong University, 2012, 0(1): 117-121
Authors:XIAO Yancai  ZHANG Qing
Affiliation:(School of Mechanical, Electronic and Control Engineering, Beijing J iaotong University, Beijing 100044, China)
Abstract:As the traditional support vector machines(SVM) is particularly sensitive to noise and outliers in the training samples, transformer fault diagnosis model is built based on fuzzy support vector machines(FSVM). It selects binary tree classification algorithm for multi-class classification. The membership value of the FSVM is obtained by fuzzy C-means clustering algorithm. The radial kernel is selected. Parameters of the FSVM model are optimized with genetic algorithm. A mass of fault samples are analyzed and results are compared with those obtained by the methods of BPNN and SVM, which shows that the proposed model is more effective and accurate, which proves the given method of transformer fault diagnosis based on binary tree fuzzy support vector machines is feasible.
Keywords:fuzzy support vector machines  binary tree  fault diagnosis  fuzzy C-means clustering algorithm  genetic algorithm  transformer
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号