首页 | 本学科首页   官方微博 | 高级检索  
     

水泥粉煤灰处理湿陷性黄土路基承载性能
引用本文:邓友生, 李龙, 孙雅妮, 姚志刚, 孟丽青. 水泥粉煤灰处理湿陷性黄土路基承载性能[J]. 交通运输工程学报, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
作者姓名:邓友生  李龙  孙雅妮  姚志刚  孟丽青
作者单位:西安科技大学 建筑与土木工程学院,陕西 西安 710054
基金项目:国家自然科学基金项目(51878554);;陕西省自然科学基础研究计划项目(2018JZ5012)~~;
摘    要:为揭示水泥粉煤灰后压浆对湿陷性黄土桩网结构路基的加固机理,开展后压浆水泥粉煤灰碎石桩室内静载试验,分析了后压浆对桩周土样湿陷系数的影响,研究了竖向静载作用下后压浆桩网结构路基沿深度方向附加应力、桩侧摩阻力及桩端阻力的变化规律;基于Boltzmann数学模型和荷载传递函数,分析了桩侧摩阻力和桩端阻力增强机理,给出后压浆桩侧摩阻力和桩端阻力计算式;利用数值模拟方法,探讨了桩体弹性模量、后压浆深度、桩网置换率和褥垫层厚度对桩网结构路基承载力的影响机制。研究结果表明:在相同荷载作用下,经水泥粉煤灰后压浆处理后的桩周土体的湿陷系数小于自然土样的湿陷系数,且小于0.015;压浆后,静载作用下桩网结构路基中桩顶的竖向附加应力逐渐减小,桩间土的竖向附加应力先减小后增大,桩侧摩阻力较未压浆桩增大了约1.54倍;随着注浆深度的增加,桩身深度方向上的应力最大值呈先增大后减小趋势,且在等桩长深度处取得应力最大值;当桩网置换率提高1倍时,沿深度方向的应力和沉降均减小,其中应力峰值降低24%,沉降量减小26%;桩网结构路基中随着褥垫层厚度的增大,路基深度方向上应力逐渐增大。可见,水泥粉煤灰处理湿陷性黄土路基能减弱路基土体湿陷性,提高承载力,在施工过程中需要考虑桩体弹性模量、后压浆深度、桩网置换率和褥垫层厚度对路基承载力的影响。

关 键 词:路基工程   静载   室内试验   水泥粉煤灰   湿陷系数   桩侧摩阻力
收稿时间:2023-03-11

Bearing capability of collapsible loess subgrade through cement-fly ash treatment
DENG You-sheng, LI Long, SUN Ya-ni, YAO Zhi-gang, MENG Li-qing. Bearing capability of collapsible loess subgrade through cement-fly ash treatment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
Authors:DENG You-sheng  LI Long  SUN Ya-ni  YAO Zhi-gang  MENG Li-qing
Affiliation:School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
Abstract:To investigate the reinforcement mechanism of cement-fly ash post-grouting on pile-net composite subgrade in collapsible loess areas, the static load tests in laboratory were carried out on the grouted cement-fly ash gravel (CFG) piles, the influence of post-grouting on the collapsibility coefficient of the soil samples around the piles was analyzed, and the changing rules of additional stress, pile side friction resistance and pile tip resistance in the depth direction of post-grouting pile-net composite subgrade under vertical static load were studied. Based on the Boltzmann mathematical model and load transfer function, the reinforcement mechanism of pile side friction resistance and pile tip resistance was investigated, and their calculation formulas after grouting were given. The influence mechanisms of elastic modulus of pile, post-grouting depth, pile-net replacement rate, and cushion layer thickness on the bearing capacity of pile-net composite subgrade were discussed by the numerical simulation method. Research results indicate that under the same static load, the collapsibility coefficient of the cement-fly ash post-grouting soil around the pile is less than that of the natural soil sample and less than 0.015. After post-grouting, the vertical additional stress of the pile top in the pile-net composite subgrade gradually decreases under the static load, the vertical additional stress of the soil between the piles decreases first and then increases, and the pile side friction resistance increases by about 1.54 times compared with the un-grouting pile. With the increase in post-grouting depth, the maximum stress in the depth direction of pile body increases first and then decreases, and the maximum stress is obtained at the depth equal to pile length. When the pile-net replacement rate is doubled, the stress and settlement decrease in the depth direction, among which the peak stress decreases by 24% and settlement decreases by 26%. With the increase in cushion layer thickness in the pile-net composite subgrade, the stress in the depth direction of the subgrade gradually increases. Therefore, the cement-fly ash treatment of collapsible loess subgrade can weaken the collapsibility of subgrade soil and improve the bearing capacity. In the construction process, the effects of elastic modulus of pile, post-grouting depth, pile-net replacement rate and cushion thickness on the bearing capacity of the subgrade should be considered.
Keywords:subgrade engineering  static load  laboratory test  cement-fly ash  collapsibility coefficient  pile side friction resistance
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号