首页 | 本学科首页   官方微博 | 高级检索  
     

高速列车受电弓气动噪声研究综述
引用本文:刘海涛, 王文宇, 周新, 张长亮, 肖乾. 高速列车受电弓气动噪声研究综述[J]. 交通运输工程学报, 2023, 23(3): 1-22. doi: 10.19818/j.cnki.1671-1637.2023.03.001
作者姓名:刘海涛  王文宇  周新  张长亮  肖乾
作者单位:华东交通大学 机电与车辆工程学院,江西 南昌 330013
基金项目:国家自然科学基金项目(12104153);;江西省主要学科学术和技术带头人培养计划项目(20204BCJL23034)~~;
摘    要:为更深入全面了解高速列车受电弓气动噪声研究现状,阐明高速列车受电弓气动噪声机理与规律,总结了近年来国内外高速列车受电弓气动噪声的研究,概括了中国、日本、德国与法国高速列车受电弓的发展历程,分析了受电弓气动噪声源、辐射气动噪声特性以及高速列车受电弓气动噪声研究方法,探讨了高速列车受电弓气动噪声生成机理与抑制方法,总结了当前研究的主要成果。分析结果表明:受电弓作为列车顶部的重要受流装置,由多个杆件组成,在高速气流中会产生显著的有调噪声,是高速列车环境噪声污染主要来源之一;高速列车受电弓主要气动噪声源分布在弓头、铰链机构、绝缘子、底架等部件的迎风侧位置,研究受电弓气动噪声的手段有实车试验、风洞试验以及数值模拟;增加附属装置可以有效控制气动噪声,如增加导流罩、喷射气流、等离子体驱动器等,但这些方法增加了系统的复杂度;基于仿生学原理改变杆件表面微结构,可以显著抑制受电弓湍流旋涡的生成,从而大幅降低气动噪声;优化杆件截面形状以及空间结构设计,可以减少阻力及湍流旋涡的生成,进而有效控制气动噪声。可见,多种途径可以降低受电弓气动噪声,但工程落地的可行性、气动噪声与气动阻力及弓网接触稳定性的耦合关系,仍需进一步深入研究。

关 键 词:高速列车   受电弓   气动噪声   噪声源   声辐射   气动噪声优化   计算气动声学
收稿时间:2022-12-16

Review on aerodynamic noise analysis of high-speed train pantographs
LIU Hai-tao, WANG Wen-yu, ZHOU Xin, ZHANG Chang-liang, XIAO Qian. Review on aerodynamic noise analysis of high-speed train pantographs[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 1-22. doi: 10.19818/j.cnki.1671-1637.2023.03.001
Authors:LIU Hai-tao  WANG Wen-yu  ZHOU Xin  ZHANG Chang-liang  XIAO Qian
Affiliation:School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
Abstract:In order to deeply and comprehensively understand the research status of aerodynamic noise of high-speed train pantographs and elucidate its mechanisms and laws, the research on the aerodynamic noise in China and abroad in recent years was summarized. Its development histories in China, Japan, Germany, and France were outlined. The sources of aerodynamic noise of pantographs, the characteristics of radiated aerodynamic noise, and the research methods for the aerodynamic noise were analyzed. The generation mechanisms and suppression methods of the aerodynamic noise were explored, and the main achievements obtained in the current research were summarized. Analysis results indicate that, as an important current collection device on the top of the train, the pantograph consists of multiple rods, and it generates significant tonal noise in high-speed airflow and is one of the main sources of environmental noise pollution in high-speed trains. The main sources of aerodynamic noise of high-speed train pantographs are distributed on the windward sides of components such as the pantograph head, knuckle, insulators, and base frame. The methods for studying the aerodynamic noise of pantographs include actual train test, wind tunnel experiment, and numerical simulation. The addition of auxiliary devices, such as the wind deflector, jet flow, and plasma actuator, can effectively control the aerodynamic noise, but these methods increase the complexity of the system. According to the principle of bionics, modifying the surface microstructure of rods can significantly suppress the generation of turbulent vortices of pantographs, thus greatly reducing the aerodynamic noise. Optimizing the cross-sectional shape and spatial structure design of rods can reduce the generation of drag and turbulent vortices, thereby effectively controlling aerodynamic noise. So, various approaches can be employed to reduce the aerodynamic noise of pantographs. However, the feasibility of engineering implementation, the coupling relationship between aerodynamic noise and aerodynamic resistance, as well as the contact stability between the pantograph and catenary, still need to be further investigated.
Keywords:high-speed train  pantograph  aerodynamic noise  noise source  acoustic radiation  aerodynamic noise optimization  computational aeroacoustics
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号