首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic green bike repositioning problem – A hybrid rolling horizon artificial bee colony algorithm approach
Institution:1. Department of Industrial and Systems Engineering, National University of Singapore, Singapore;2. Air Traffic Management Research Institute, Nanyang Technological University, Singapore;3. Manufacturing and Industrial Engineering Cluster, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore;4. Industrial and Manufacturing Systems Engineering, University of Hong Kong, Hong Kong, China
Abstract:This paper introduces a new dynamic green bike repositioning problem (DGBRP) that simultaneously minimizes the total unmet demand of the bike-sharing system and the fuel and CO2 emission cost of the repositioning vehicle over an operational period. The problem determines the route and the number of bikes loaded and unloaded at each visited node over a multi-period operational horizon during which the cycling demand at each node varies from time to time. To handle the dynamic nature of the problem, this study adopts a rolling horizon approach to break down the proposed problem into a set of stages, in which a static bike repositioning sub-problem is solved in each stage. An enhanced artificial bee colony (EABC) algorithm and a route truncation heuristic are jointly used to optimize the route design in each stage, and the loading and unloading heuristic is used to tackle the loading and unloading sub-problem along the route in a given stage. Numerical results show that the EABC algorithm outperforms Genetic Algorithm in solving the routing sub-problem. Computation experiments are performed to illustrate the effect of the stage duration on the two objective values, and the results show that longer stage duration leads to higher total unmet demand and total fuel and CO2 emission cost. Numerical studies are also performed to illustrate the effects of the weight and the loading and unloading times on the two objective values and the tradeoff between the two objectives.
Keywords:Green bike repositioning problem  Dynamic bike repositioning problem  Rolling horizon approach  Artificial bee colony algorithm  Vehicle emissions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号