首页 | 本学科首页   官方微博 | 高级检索  
     

基于引力搜索RBF神经网络的柴油机故障诊断
引用本文:卫晓娟,李宁洲,周学舟,丁杰,丁旺才. 基于引力搜索RBF神经网络的柴油机故障诊断[J]. 兰州交通大学学报, 2014, 0(4): 30-35
作者姓名:卫晓娟  李宁洲  周学舟  丁杰  丁旺才
作者单位:兰州交通大学 机电工程学院,甘肃兰州730070
基金项目:国家自然科学基金(11162007);甘肃省自然科学基金(1308RJZAl49)
摘    要:为了解决RBF神经网络的参数选择问题,以便提高柴油机故障诊断的精度,提出了一种基于引力搜索算法和RBF神经网络相结合的智能故障诊断方法.该方法首先采用减聚类算法确定网络隐层单元数,然后提出改进引力搜索算法优化RBF神经网络的参数.利用国际标准样本集对该方法进行分类测试,并将该方法应用于柴油机故障的诊断,仿真实验验证了该方法对柴油机故障的分类和诊断效果.

关 键 词:柴油机  故障诊断  RBF神经网络  引力搜索

Fault Diagnosis of Diesel Engine Based on Gravitational Search RBF Neural Network
WEI Xiao-juan,LI Ning-zhou,ZHOU Xue-zhou,DING Jie,DING Wang-cai. Fault Diagnosis of Diesel Engine Based on Gravitational Search RBF Neural Network[J]. Journal of Lanzhou Jiaotong University, 2014, 0(4): 30-35
Authors:WEI Xiao-juan  LI Ning-zhou  ZHOU Xue-zhou  DING Jie  DING Wang-cai
Affiliation:(School of Meehatronie Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract:In order to solve the optimization of the parameters of RBF neural network to improve the accuracy of fault diagnosis of diesel engine,an intelligent fault diagnosis method based on the combination of gravitational search algorithm and RBF neural network is proposed.At first,the subtractive clustering algorithm is used to determine the number of hidden layer units,then the improved gravitational search algorithm is adopted to optimize the parameters of RBF neural net-work.UCI testing data sets are used to check the classification accuracy of the proposed method, and the proposed method is applied to fault diagnosis of diesel engine.Simulation results show that the proposed method is effective in classification and diagnosis of the faults of diesel engine.
Keywords:diesel engine  fault diagnosis  RBF neural network  improved gravitational search al-gorithm
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号