首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于改进型KNN算法的文本分类方法
引用本文:钱强,庞林斌,高尚. 一种基于改进型KNN算法的文本分类方法[J]. 江苏科技大学学报(社会科学版), 2013, 0(4): 381-385
作者姓名:钱强  庞林斌  高尚
作者单位:江苏科技大学计算机科学与工程学院,江苏镇江,212003
摘    要:KNN算法是比较适合于文本分类的一种分类算法,但由于其计算复杂度会随着训练集规模的增加而线性增加,从而限制了它的实际应用效果。通过改变对近邻点的搜索策略,提出了一种改进型的KNN算法。该算法在对最近邻的选择过程中,放弃传统算法中遍历所有样本的做法,而是通过逐渐逼近的思想来寻找最近邻点。实验证明,该方法在保持和传统的KNN算法几乎一样的精度性能前提下,可以明显降低算法的计算复杂度,降低时间开销,取得了较满意的结果。

关 键 词:KNN  文本分类  搜索策略

A text classification method based on improved KNN algorithm
Qian Qiang , Pang Linbin , Gao Shang. A text classification method based on improved KNN algorithm[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2013, 0(4): 381-385
Authors:Qian Qiang    Pang Linbin    Gao Shang
Affiliation:(School of Computer Science and Engineering,Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212003, China)
Abstract:KNN algorithm is a classification algorithm suitable for text classification , but because its computa-tional complexity increases linearly with the increase in the size of the training set ,its practical application is lim-ited.In this paper, we propose an improved KNN algorithm by changing the strategy of searching the nearest neighbor points .The algorithm abandons the practice of the traditional algorithm to traverse all samples in the se-lection process nearest neighbor , and utilizes the idea of gradual approximation to find the nearest neighbor .Ex-perimental results show that the proposed algorithm ,under the premise of maintaining almost the same precision performance of traditional KNN algorithm ,can significantly reduce the computational complexity of the algorithm and running time .
Keywords:KNN  text classification  searching strategy
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号