首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于 Curvelet 变换的地震数据去噪方法和应用
引用本文:郑晓雯. 一种基于 Curvelet 变换的地震数据去噪方法和应用[J]. 城市道桥与防洪, 2024, 0(3): 251-254
作者姓名:郑晓雯
基金项目:基金项目: 2020年上海市科委优秀技术带头人计划项目(20XD1432400);上海建科集团科研创新项目(KY10000038.20210052)
摘    要:如何去除噪声且不损失有效信号是地震数据处理中的一个重难点。实验将一种Curvelet自适应阈值去噪法应用到地震数据处理中,Curvelet变换系数由自适应阈值约束,经阈值函数映射得到估计系数,最后对所得的估计系数进行逆变换,实现地震数据去噪,有效提高地震数据信噪比。模型和实际数据处理结果表明,Curvelet自适应阈值去噪法较好地压制了噪声的同时保护有效信号,克服了F-X域滤波产生新噪声的缺陷,取得了较好去噪效果。

关 键 词:Curvelet变换;F-X域滤波;阈值;去噪;信噪比
收稿时间:2023-04-27
修稿时间:2023-04-28

Application of Seismic Data Denoising Method Based on Curvelet Transform
ZHENG Xiaowen. Application of Seismic Data Denoising Method Based on Curvelet Transform[J]. Urban Roads Bridges & Flood Control, 2024, 0(3): 251-254
Authors:ZHENG Xiaowen
Abstract:How to remove noise without losing effective signals is a major challenge in seismic data processing. In the experiment, a Curvelet adaptive threshold denoising method is applied to seismic data processing. The Curvelet transform coefficient is constrained by the adaptive threshold, and the estimated coefficient is mapped by the threshold function. Finally, the estimated coefficient is inverted to achieve seismic data denoising, which effectively improves the signal-to-noise ratio of seismic data. The model and actual data processing results show that the Curvelet adaptive threshold denoising method effectively suppresses the noise while protecting the effective signals, overcomes the defect of new noise generated by F-X domain filtering, and achieves the good denoising results.
Keywords:Curvelet transform   F-X domain filtering   threshold   denoising   signal-to-noise ratio
点击此处可从《城市道桥与防洪》浏览原始摘要信息
点击此处可从《城市道桥与防洪》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号