首页 | 本学科首页   官方微博 | 高级检索  
     

运动车辆检测与跟踪方法
引用本文:娄路, 赵玲, 耿涛. 运动车辆检测与跟踪方法[J]. 交通运输工程学报, 2012, 12(4): 107-113. doi: 10.19818/j.cnki.1671-1637.2012.04.014
作者姓名:娄路  赵玲  耿涛
作者单位:1.重庆交通大学 信息科学与工程学院, 重庆 400074;2.阿伯里斯特威斯大学 计算机科学系, 锡尔迪金 阿伯里斯特威斯 SY23 3DB
基金项目:国家自然科学基金项目,重庆市自然科学基金项目
摘    要:为提高城市智能交通综合管理能力, 提出了基于视频分析的运动车辆检测与跟踪方法。在城市交通干道路面环境中, 根据运动目标与道路背景统计特性的差异, 基于贝叶斯概率准则, 提出一个自适应背景更新算法, 检测分离运动车辆目标前景, 采用卡尔曼滤波器实现对视频序列中车辆目标的运动检测与实时跟踪, 并对在重庆某交通干道的交通流视频进行检测。试验结果表明: 该方法在常规视频分辨率下能实现实时处理视频, 平均检测准确率为94%, 具有较好的实时性与鲁棒性, 能够实现城市交通环境中各类运动车辆的检测与跟踪。

关 键 词:智能交通系统   交通流   检测方法   自适应背景   车辆跟踪   贝叶斯算法   卡尔曼滤波
收稿时间:2012-02-13

Detecting and tracking method of moving vehicle
LOU Lu, ZHAO Ling, GENG Tao. Detecting and tracking method of moving vehicle[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 107-113. doi: 10.19818/j.cnki.1671-1637.2012.04.014
Authors:LOU Lu  ZHAO Ling  GENG Tao
Affiliation:1. School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China;2. Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Ceredigion, UK
Abstract:In order to improve the comprehensive management ability of intelligent transportation systems in cities,a detecting and tracking method of moving vehicle was presented by using video analysis.Considering the pavement environment of urban transport artery and the difference between moving object and the statistical characteristics for road background,an adaptive background updating algorithm was realized based on Bayesian probability criterion,from which foreground image was extracted.Motion detection and real-time tracking were realized for target vehicle in video sequence based on Kalman filter.The traffic flow video collected from a certain urban transport artery of Chongqing was detected by using the proposed method.Experimental result indicates that the video with normal resolution can be processed in time by using the method,and the average detecting accuracy is 94%,so the proposed method has good real-time performance and robustness,and meets the requirement of real-time detecting and tracking vehicles in urban traffic arteries.2 tabs,5 figs,15 refs.
Keywords:intelligent transportation system  traffic flow  detecting method  adaptive background  vehicle tracking  Bayesian algorithm  Kalman filter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号