首页 | 本学科首页   官方微博 | 高级检索  
     

实时行人检测预警系统
引用本文:程如中, 赵勇, 王执中, 许家尧, 王新安. 实时行人检测预警系统[J]. 交通运输工程学报, 2012, 12(5): 110-118. doi: 10.19818/j.cnki.1671-1637.2012.05.015
作者姓名:程如中  赵勇  王执中  许家尧  王新安
作者单位:1.北京大学 深圳研究生院,广东 深圳 518055;;2.香港生产力促进局,香港
基金项目:香港特别行政区创新科技署创新及科技支援计划粤港创新圈项目
摘    要:针对重特大交通事故中的行人保护问题, 提出了基于侧面行人特征的实时行人检测预警系统(PDWS)。系统由检测模块和预警模块两部分组成, 其中检测模块使用Haar与HOG特征和AdaBoost与SVM分类器, 通过侧面行人样本库完成行人特征的提取与检测, 同时应用窗口拆分法与快速窗口扫描算法提高检测效率, 得到一个具有高检测率与低误检率的结果。在预警模块融合了行人距离、汽车速度及角速度信息, 判断前方行人存在碰撞的危险。使用系统及算法对城市环境复杂背景下横过街道的行人进行了实车验证。测试结果表明: 对704Pixel×576Pixel图像的检测帧率为13~18帧.s-1, 检测率大于85%, 误检率小于1%, 预警时间小于1s, 实车验证结果达到了车载主动安全系统实时性与准确性的要求。

关 键 词:预警系统   主动安全   Haar特征   HOG特征   行人检测   快速窗口扫描   窗口拆分法
收稿时间:2012-05-28

Real-time pedestrian detecting and warning system
CHENG Ru-zhong, ZHAO Yong, WANG Zhi-zhong, XU Jia-yao, WANG Xin-an. Real-time pedestrian detecting and warning system[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 110-118. doi: 10.19818/j.cnki.1671-1637.2012.05.015
Authors:CHENG Ru-zhong  ZHAO Yong  WANG Zhi-zhong  XU Jia-yao  WANG Xin-an
Affiliation:1. School of Shenzhen Graduate, Peking University, Shenzhen 518055, Guangdong, China;;2. Hong Kong Productivity Council, Hong Kong, China
Abstract:A real-time pedestrian detecting and warning system(PDWS) based on the features of pedestrian side was proposed to solve the problem of pedestrian protection in serious traffic accidents. The system consisted of two parts, detecting module and warning module. The feature extraction and detection pedestrian were completed by using side pedestrian sample dataset in detecting module, Haar and HOG features together with AdaBoost and SVM classifiers were applied to complete the feature extraction and detection. Window-dividing method and operator context scanning(OCS) method were used to improve the detecting efficiency, and a result with both high detection rate and low false alarm rate was obtained. The velocity and angular velocity of automobile together with the distance of detected pedestrian were merged in warning module, so the system could judge the collision risk for the pedestrian in the front. The system and the algorithms were tested toward the pedestrian crossing street with a complex urban envirnment in real vehicle. Test result shows that for the images with 704 Pixel×576 Pixel, the frame rate is about 13-18 frame·s-1, the detecting rate is above 85%, the false detecting rate is below 1%, and the warning response time is less than 1 s. The result meets the requirements of on-board active safety system both in accuracy and real-time use.
Keywords:warning system  active safety  Haar feature  HOG feature  pedestrian detection
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号