首页 | 本学科首页   官方微博 | 高级检索  
     

反传神经网络在油石比估计中的应用
作者单位:衡水市市政工程管理处
摘    要:利用反传神经网络算法,将沥青混凝土级配等参数作为输入参数,并通过变换不同混合料结构类型的训练样本,可以估计沥青混凝土最佳沥青含量。通过实验验证了这种方法的可行性,并提出了改进的思路。

关 键 词:反传神经网络  沥青混凝土  级配  最佳沥青含量

Application of Reverse Conveying Nervous Network in Estimation of Asphalt-concrete Ration
He Aiping. Application of Reverse Conveying Nervous Network in Estimation of Asphalt-concrete Ration[J]. Hebei Jiaotong Science and Technology, 2006, 0(2)
Authors:He Aiping
Abstract:By means of the algorithm of reverses conveying nervous network, taking asphalt-concrete grading as input parameter, changing train samples of different compound structure types, the optimum content of asphalt can be estimated. Experimental results show that this method is feasible. Improvement idea is put forward in the paper.
Keywords:reverses conveying nervous network  asphalt-concrete  grading  optimum asphalt content
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号