首页 | 本学科首页   官方微博 | 高级检索  
     

高速铁路钢轨擦伤形成影响因素
引用本文:侯博文, 秦家栋, 高亮, 马超智, 刘秀波, 王璞. 高速铁路钢轨擦伤形成影响因素[J]. 交通运输工程学报, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010
作者姓名:侯博文  秦家栋  高亮  马超智  刘秀波  王璞
作者单位:1.北京交通大学 土木建筑工程学院,北京 100044;;2.山东轨道交通勘察设计院有限公司,山东 济南 250014;;3.中国铁道科学研究院集团有限公司 基础设施检测研究所,北京 100081;;4.中国铁道科学研究院集团有限公司 铁道建筑研究所,北京 100081
基金项目:中央高校基本科研业务费专项资金项目2022JBCZ009中国国家铁路集团有限公司科技研究开发计划P2021G053国家自然科学基金项目51827813
摘    要:基于ANSYS显式动力分析建立了三维瞬态轮轨接触力-热耦合有限元模型,考虑了温度对热-弹塑性材料参数的影响;以初始温度30 ℃、轴重16 t、初始速度300 km·h-1、滑滚比30%工况为例,研究了车轮在经过钢轨典型断面前、中、后3个时刻下钢轨踏面的接触压力、有效塑性应变、温度分布及其变化特征;在此基础上,进一步分析了列车轴重、钢轨踏面状态、列车牵引和制动状态对钢轨踏面最大温升与最大接触压力的影响,并基于钢轨马氏体白蚀层的形成机制讨论了钢轨擦伤的形成机理。研究结果表明:在本文计算工况下,钢轨踏面最大接触压力为1 186.43 MPa,出现在接触区中心位置,车轮通过后钢轨内部存在部分残余热应力和机械应力,钢轨最大有效塑性应变为0.028 2,最大温升为554.55 ℃;随着列车轴重从12 t增大至16 t,钢轨最大温升由339.89 ℃增大至402.79 ℃;钢轨踏面摩擦因数由0.2增大至0.6时,钢轨最大温升由230.93 ℃增大至519.25 ℃;滑滚比由10%增大至40%时,车轮制动和牵引引起的钢轨最大温升分别由264.52 ℃和362.10 ℃增大至700.46 ℃和819.61 ℃,相同滑滚比条件下,牵引工况引起的钢轨最大温升大于制动工况引起的钢轨最大温升,其中在滑滚比增大至40%时,制动和牵引状态下钢轨踏面最高温度分别为700.46 ℃和819.61 ℃,钢轨最大温升均超过相变温度,可导致钢轨踏面产生马氏体白蚀层,从而形成钢轨踏面擦伤。

关 键 词:高速铁路   钢轨擦伤   力-热耦合   滑滚比   钢轨马氏体   显式动力学
收稿时间:2022-08-11

Influencing factors of rail burn formation for high-speed railway
HOU Bo-wen, QIN Jia-dong, GAO Liang, MA Chao-zhi, LIU Xiu-bo, WANG Pu. Influencing factors of rail burn formation for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010
Authors:HOU Bo-wen  QIN Jia-dong  GAO Liang  MA Chao-zhi  LIU Xiu-bo  WANG Pu
Affiliation:1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;;2. Shandong Rail Transit Survey and Design Institute Co., Ltd., Jinan 250014, Shandong, China;;3. Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China;;4. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
Abstract:The ANSYS explicit dynamic analysis was employed to build a three-dimensional transient wheel-rail contact mechanical-thermal coupling finite element model with the influence of temperature on the thermo-elastoplastic material parameters taken into consideration. Under the working conditions of an initial temperature of 30 ℃, an axle load of 16 t, an initial speed of 300 km·h-1, and a slip-to-roll ratio of 30%, the contact pressure, effective plastic strain, temperature distribution and its variation characteristics of the rail tread were studied at the earlier, middle, and later moments when the wheel passed by the typical rail sections. On this basis, the influences of the train axle load, rail tread state, as well as the train traction and braking states on the maximum temperature rise and maximum contact pressure of the rail tread were further analyzed, and the formation mechanism of rail burn was discussed on the basis of the formation mechanism of the martensite white etching layer of rail. Research results show that under the calculation conditions of this paper, the maximum contact pressure of the rail tread is 1 186.43 MPa, which appears at the center of the contact zone. The residual thermal and mechanical stresses inside the rail can be found after the wheel passes. The maximum effective plastic strain of the rail is 0.028 2. The maximum temperature rise is 554.55 ℃. When the train axle load increases from 12 t to 16 t, the maximum temperature rise of the rail increases from 339.89 ℃ to 402.79 ℃. When the friction coefficient of the rail tread increases from 0.2 to 0.6, the maximum temperature rise of the rail increases from 230.93 ℃ to 519.25 ℃. When the slip-to-roll ratio increases from 10% to 40%, the maximum temperature rises of the rail caused by the wheel braking and traction increase from 264.52 ℃ to 700.46 ℃ and from 362.10 ℃ to 819.61 ℃, respectively. Under the same slip-to-roll ratio, the maximum temperature rise of the rail caused by the traction condition is more significant than that caused by the braking condition. In particular, when the slip-to-roll ratio increases to 40%, the maximum temperatures of the rail tread are 700.46 ℃ and 819.61 ℃ under the braking and traction conditions, respectively. The maximum temperature rise of the rail is higher than the phase transition temperature. As a result, a martensite white etching layer on the rail tread is formed to develop rail burn on the rail tread. 
Keywords:high-speed railway  rail burn  mechanical-thermal coupling  slip-to-roll ratio  rail martensite  explicit dynamics
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号