Abstract: | Pipelines are important to offshore oil and gas development, but suffers from the pipeline walking phenomenon due to cyclic temperature variations—where large axial walking distances threaten the safety of pipeline systems. Current research indicates that pipeline walking is triggered by steel catenary riser (SCR) tension, seabed slopes, or thermal transients. This paper proposes a new driving mechanism for the pipeline walking phenomenon, involving cyclic hardening soil strength. The finite element analysis method was adopted to analyse the soil friction difference induced walking phenomenon, and the influence of key parameters on the gain in soil friction on walking distance was studied. Pipeline walking distances under different drainage conditions in the heating and cooling processes were also calculated, and the impact of the degree of drainage in the heating process was determined. To better understand the new pipeline walking mechanism, theoretical analysis of the walking behaviour under different cyclic soil friction conditions was carried out. Analytical solutions for estimating the pipeline walking distance were also provided, based on the simplified theoretical analysis. |