首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Algorithmic formulation of clay and sand pipe–soil interaction models for on-bottom stability analysis
Abstract:This paper presents a new algorithmic formulation of the clay and sand pipe–soil interaction models recommended by the DNV-RP-F109 code for dynamic on-bottom stability analysis of submarine pipelines. The pipe–soil force update algorithm is formulated within the framework of computational elasto-plasticity and applies Backward-Euler integration to ensure stability and robustness for large time step sizes. Algorithmic optimization techniques are developed by utilizing a closed-form solution and subincrementation. A numerical verification study covering full cyclic displacement ranges of a 12 inch pipeline is presented. The new formulation is shown to increase the time step size by a factor of up to 50 compared to commercial software tools for on-bottom stability analysis. This achievement will be particularly beneficial for long-duration 3D nonlinear time domain on-bottom stability analysis.
Keywords:Pipe–soil interaction  On-bottom stability  Elasto-plastic  Algorithmic optimization  Backward-Euler update algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号