首页 | 本学科首页   官方微博 | 高级检索  
     


A study on scantling formulae of plate members due to lateral pressure under the effect of axial loads
Affiliation:1. Graduate School of Engineering Science, Yokohama National University, 240-8501, Kanagawa, Japan;2. Design Department, Onomichi Dockyard Co., Ltd., Hiroshima, Japan;3. Faculty of Engineering, Yokohama National University, 240-8501, Kanagawa, Japan;4. Hull Rules Development Dept., ClassNK, Tokyo, Japan;1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China;2. Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, UK;1. School of Naval Architecture and Ocean Engineering, Dalian University of Technology (DUT), NO-116024, Dalian, China;2. Department of Marine Technology and Centre for Autonomous Marine Operations and Systems (AMOS), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
Abstract:Existing rule scantling formulae of plate members are based on conventional plastic design theory, and do not necessarily reflect complicated plate bending phenomena under axial loads. In this study, we first formulated the effect of axial load on the fully plastic moment based on the von Mises yield criterion for longitudinally stiffened plate in addition to the well-known formula for transversely stiffened plate. In addition, we derived a theoretical formulation of the lateral pressure corresponding to 2-point hinge and 3-point hinge formation taking account of the effect of the additional lateral force due to the axial loads on the deflected plating, using a simple plate strip bending model assuming a long plate with a large aspect ratio.Then, a series of elastic-plastic FE analyses was carried out to verify the structural behavior and the effect of axial load on the plate plastic bending strength. The plate strength was evaluated based on the residual deflection criteria of two cases (0.26 mm and 4.0 mm), and the results were compared with the theoretical derivation. As a result, it was found that assumption of linear strength reduction to the axial stress can cover the transversely stiffened plate under compressive axial stress conservatively. As to the transversely stiffened plate under tensile axial stress and the longitudinally stiffened plate, the strength reduction was in accordance with the reduction in the fully plastic moment based on the von Mises yield criterion in the conservative side. Finally, based on the findings, the required plate thickness coefficients were proposed on an empirical basis both for transversely and longitudinally stiffened plate under compressive and tensile axial loads.
Keywords:Elastic-plastic FEM  Bending moment  Residual deflection  Classification rules  Axial loads
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号