首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ride Quality and Dynamics of Rail Vehicle Models for Microcomputers
Authors:W H Elmaraghy Faculty of Engineering Science
Institution:  a The University of Western Ontario, London, Ontario, Canada
Abstract:This paper describes mathematical and computer models for ride quality and dynamics of rail vehicles developed for running on personal computers. The purpose of the computer simulations is for prediction of ride quality in order to study the dynamic stability of the system and the effect of track quality and irregularities on ride quality.

In deriving the equations of motion for dynamic stability, the tangential forces acting on the contact areas between the wheels and rails are of fundamental importance in railway vehicles dynamics and are included in the analysis 1]. These forces are due to the creep phenomenon between the wheel and the rail on which it is rolling. Track irregularities are defined in terms of four components consisting of gauge, cross level, alignment and vertical surface profile 2]. Relation of allowable track irregularities versus speed is given by the FRA Track Safety Standards. Analytical representation of track irregularities should include both PSD (Power Spectral Density) for CWR (Continuous Welded Rail) as well as discrete inputs from track joints.

In this paper, the rail vehicle suspension analysis and dynamics mathematical and computer models are described. The computer models are written in Fortran 77 and designed to run on personal computer. The paper also discusses programming considerations that must be taken into account when programming for microcomputers under DOS (IBM's Disk Operating System) and MS or RM Fortran Compilers. Most of the considerations are however, valid in general with respect to engineering software development and programming for microcomputers.

Computer graphics is a powerful tool for visualization of the resulting solutions such as the display of the characteristic roots for the eigenvalues solution on a root locus plot and representation of acceleration levels versus the “Reduced Comfort Boundary” limits defined by the International Standards Organization” (ISO 2631-1985). In this paper some examples of these resulting outputs are presented and their significance discussed.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号