首页 | 本学科首页   官方微博 | 高级检索  
     检索      

水冷型质子交换膜燃料电池温度控制策略
引用本文:陈维荣,李艳昆,李岩,赵兴强.水冷型质子交换膜燃料电池温度控制策略[J].西南交通大学学报,2015,28(3):393-399.
作者姓名:陈维荣  李艳昆  李岩  赵兴强
基金项目:国家科技支撑计划资助项目(2014BAG08B01)国家自然科学基金资助项目(51177138,61473238,51407146)高等学校博士学科点专项科研基金资助项目(20120184120011)
摘    要:为了解决传统温度控制策略在质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电堆实际操作过程中存在的强耦合性,避免在电堆电流大幅加载时电堆内部出现短时高温,提出了一种基于电堆空气入口压力变化的改进温度控制策略.该策略以冷却水入口压力为调节目标,通过调节冷却水泵的转速控制冷却水流速,调节散热器风扇转速控制电堆冷却水入口温度.考虑电堆极板耐压的条件下,在自主搭建的多功能PEMFC测试平台上对传统控制策略与改进控制策略做了实验对比.结果表明,改进温度控制策略使冷却水入口温度最大超调量减小34.7%,冷却水出入口最大温度偏差减小17.8%,实现了较高的控制精度;电流从120 A降低到90 A时,调整时间最少缩短100 s,提高了系统的响应速度,满足燃料电池发电系统对温度控制的需求. 

关 键 词:PEMFC    温度控制策略    压力跟随    解耦控制
收稿时间:2014-02-22

Temperature Control Strategy for Water-Cooled Proton Exchange Membrane Fuel Cells
CHEN Weirong,LI Yankun,LI Yan,ZHAO Xingqiang.Temperature Control Strategy for Water-Cooled Proton Exchange Membrane Fuel Cells[J].Journal of Southwest Jiaotong University,2015,28(3):393-399.
Authors:CHEN Weirong  LI Yankun  LI Yan  ZHAO Xingqiang
Abstract:An improved temperature control strategy by variation of air inlet pressure was proposed to solve the strong coupling problem that exists in the process of actual operation of a proton exchange membrane fuel cell (PEMFC) and to avoid the occurrence of instantaneous high temperature in the internal stack during a large amplitude. In order to adjust the cooling water inlet pressure, this strategy controls the velocity of cooling water by adjusting the speed of cooling water pump, and controls the inlet temperature of cooling water by regulating the rotational speed of the radiator fan. Taking into account the pressure-withstanding ability of stack plates, comparative experiments between the traditional control strategy and the improved control strategy were made on a self-developed multifunctional PEMFC test platform. The results show that the improved temperature control strategy could reduce the maximum overshoot of the cooling water inlet temperature by 34.7% and decrease the maximum difference between the cooling water inlet and outlet temperatures by 17.8%. Consequently, a higher control precision was achieved, and the response speed of system was improved with a maximum time reduction of more than 100 s when the current is reduced from 120 A to 90 A. Therefore, this strategy can meet the requirements on the temperature control of fuel cell systems. 
Keywords:
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号