首页 | 本学科首页   官方微博 | 高级检索  
     

基于轻量级卷积神经网络的烟雾识别算法
作者姓名:袁飞  赵绪言  王一戈  赵治晟
摘    要:由于烟雾图像场景模糊不清,背景复杂多变,难以捕获到有效特征,导致算法识别误报率和漏报率较高;此外,深度卷积神经网络结构复杂,参数繁多,难以缩短其计算时间至1 ms内,这成为实时火灾预警的一大难题. 为了解决上述问题,提出了一种基于4种Inception结构的轻量级卷积神经网络SInception (sequeeze-and-excitation inception)在此基础上加入SE Block (sequeeze-and-excitation block)用于对烟雾特征进行重新分配;同时,为了避免由于训练样本不足引起的过拟合,原始数据集上采用数据增强技术以及生成对抗网络生成更多训练样本,并在后续实验中采用了融合暗通道先验特征的策略. 实验结果表明:该网络在增强的数据集GAN-Aug-YUAN上将识别误报率降为0的同时将准确率提升至99.65%,且计算时间减少到0.26 ms. 

关 键 词:烟雾识别   深度学习   计算机视觉   暗通道特征   生成对抗网络
收稿时间:2019-08-07
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号