首页 | 本学科首页   官方微博 | 高级检索  
     

基于Q-Learning的智能体训练
引用本文:赵增荣,韩提文. 基于Q-Learning的智能体训练[J]. 石家庄铁道学院学报, 2007, 20(2): 37-39,72
作者姓名:赵增荣  韩提文
作者单位:[1]河北师范大学职业技术学院,河北石家庄050031 [2]河北工业职业技术学院成教部,河北石家庄050030
基金项目:河北师范大学校科研和教改项目
摘    要:针对机器人足球比赛的多智能体环境下智能体的训练问题,提出了一种将模糊控制与Q-Learning相结合的学习方法,并在学习过程中自动调节回报函数以获得最优策略,此方法的有效性在中型组的仿真平台上得到了验证,并取得了较好效果,还可将它改进应用于其他多智体环境。

关 键 词:模糊控制  回报函数
文章编号:1006-3226(2007)02-0037-04
收稿时间:2006-11-06
修稿时间:2006-11-06

How to Train the Agent Based on the Way of Q-Learning
Zhao Zengrong,Han Tiwen. How to Train the Agent Based on the Way of Q-Learning[J]. Journal of Shijiazhuang Railway Institute, 2007, 20(2): 37-39,72
Authors:Zhao Zengrong  Han Tiwen
Affiliation:1. College of Vocation and Technology, Hebei Normal University, Shijiazhuang 050031, China; 2. The Adults Education Department of Hebei Industrial Vocational Technology College, Shijiazhuang 050030, China
Abstract:In order to solve the problem of agent training in the multi-agent circumstances of robot soccer, a new method of agent learning is put forward, which combines the fuzzy control with the Q-Learning. During the learning process, the reward function is controlled automatically to earn the optimal policy. It is proved that this method is effective on the simulation platform of middle-size league, and the simulation result is good. In addition, it could be adapted to apply in other multi-agent circumstances.
Keywords:Q-Learning
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号