首页 | 本学科首页   官方微博 | 高级检索  
     

城市轨道交通小交路计划与客流控制协同优化策略
引用本文:贾斌,朱凌,李树凯,刘家林. 城市轨道交通小交路计划与客流控制协同优化策略[J]. 交通运输系统工程与信息, 2022, 22(1): 124-132. DOI: 10.16097/j.cnki.1009-6744.2022.01.014
作者姓名:贾斌  朱凌  李树凯  刘家林
作者单位:北京交通大学,a. 轨道交通控制与安全国家重点实验室;b. 交通系统科学与工程研究院,北京 100044
基金项目:国家重点研发计划;国家自然科学基金;轨道交通控制与安全国家重点实验室资助项目
摘    要:高峰时段的大客流需求易造成城市轨道站台乘客大量聚集,从而给城市轨道交通系统带来安全隐患,降低乘客乘车的舒适度;同时,客流空间分布的不均衡性导致供需能力不匹配,降低了列车资源的利用率。针对该现象,本文结合大小交路开行方案与客流控制策略研究城市轨道交通列车时刻表协同优化问题。考虑到城市轨道交通客流的不确定性,将乘客到达率设置为不确定变量,而后基于客流演化与列车运行的动态关系,建立以最小化滞留乘客数、客流控制人数、列车运行时间,以及最大化列车资源利用率衡量值为目标的优化模型,并设计一种基于机会约束的随机场景优化算法进行模型求解。以北京市某轨道线路为例进行数值实验验证模型的有效性。结果表明,相较于常规运营策略,本文提出的协同优化策略在期望滞留人数和列车运行时间方面有了较大改善,更好地实现了乘客成本和企业运营成本之间的均衡。

关 键 词:城市交通  列车时刻表优化  机会约束  小交路策略  客流控制策略  
收稿时间:2021-10-08

Collaborative Optimization Strategy of Short-turning Plan and Passenger Flow Control in Urban Rail Transit
JIA Bin,ZHU Ling,LI Shu-kai,LIU Jia-lin. Collaborative Optimization Strategy of Short-turning Plan and Passenger Flow Control in Urban Rail Transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 124-132. DOI: 10.16097/j.cnki.1009-6744.2022.01.014
Authors:JIA Bin  ZHU Ling  LI Shu-kai  LIU Jia-lin
Affiliation:a. State Key Laboratory of Rail Traffic Control and Safety; b. Institute of Transportation System Science andEngineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:In urban rail systems, the high passenger flow demand in peak hours would cause a large number ofpassengers stranded at platforms, which will not only bring potential safety risks to the system but also reduce thecomfort of passengers. Meanwhile, the imbalance of passenger flow spatial distribution leads to the mismatch of supplyand demand capacity, which reduces the utilization of train resources. This paper studies the collaborative optimizationof train timetables combined with the full-length and short-turning routes and passenger flow control strategy.Considering the uncertainty of passenger flow, the passenger arrival rate is set as an uncertain variable. Then, based onthe dynamic relationship between passenger flow evolution and train operation, an optimization model is established tominimize the number of stranded passengers, the number of passenger flow controlled, train operation time, and tomaximize the measurement value of train resources utilization. A scenario- based chance- constrained optimizationalgorithm is designed to solve the model. Numerical experiments are carried out to verify the effectiveness of themodel based on an urban rail line in Beijing. The results show that compared with the regular strategy, the collaborativeoptimal strategy proposed in this paper has greatly reduced the expected number of stranded people and train operationtime, and better realized the balance between passenger cost and enterprise operation cost.
Keywords:urban traffic,train timetabling optimization,chance-constrained optimization,short-turning strategy  passenger flow control strategy,
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号