首页 | 本学科首页   官方微博 | 高级检索  
     

高速公路交通事故起数时空分析模型
引用本文:马壮林, 邵春福, 胡大伟, 马社强. 高速公路交通事故起数时空分析模型[J]. 交通运输工程学报, 2012, 12(2): 93-99. doi: 10.19818/j.cnki.1671-1637.2012.02.013
作者姓名:马壮林  邵春福  胡大伟  马社强
作者单位:1.长安大学 汽车学院, 陕西 西安 710064;;2.北京交通大学 城市交通复杂系统理论与技术教育部重点实验室, 北京 100044;;3.中国人民公安大学 交通管理工程系, 北京 102623
基金项目:“十一五”国家科技支撑计划项目,高等学校博士学科点专项科研基金项目,中央高校基本科研业务费专项资金项目
摘    要:为了分析交通事故起数与时间、道路空间结构及交通运行环境等潜在影响因素之间的关系, 从时间和空间角度选择9个自变量, 分别从路段长度一致和路段坡度一致2个角度, 构建交通事故起数时段、周日和月分布模型。以某典型交通事故多发段为例, 分别运用泊松回归模型、负二项回归模型、零堆积泊松回归模型和零堆积负二项回归模型拟合交通事故起数时段、周日和月分布模型, 根据模型的拟合优度检验, 分别确定3个模型的最佳形式, 从而构建交通事故起数时空分析模型。研究结果表明: 从AIC准则和BIC准则来看, 基于路段长度一致的交通事故起数时段、月分布模型采用负二项回归模型拟合效果较好, 其他模型选择泊松回归模型拟合效果较好; 基于路段长度一致的交通事故起数时段、周日、月分布模型的预测误差小于基于路段坡度一致的交通事故起数时段、周日、月分布模型。

关 键 词:交通工程   交通事故起数   时空分析模型   泊松回归模型   负二项回归模型   零堆积泊松回归模型   零堆积负二项回归模型
收稿时间:2011-11-18

Temporal-spatial analysis model of traffic accident frequency on expressway
MA Zhuang-lin, SHAO Chun-fu, HU Da-wei, MA She-qiang. Temporal-spatial analysis model of traffic accident frequency on expressway[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 93-99. doi: 10.19818/j.cnki.1671-1637.2012.02.013
Authors:MA Zhuang-lin  SHAO Chun-fu  HU Da-wei  MA She-qiang
Affiliation:1. School of Automobile, Chang'an University, Xi'an 710064, Shaanxi, China;;2. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China;;3. Department of Traffic Management Engineering, Chinese People's Public Security University, Beijing 102623, China
Abstract:In order to analyze the relationships among traffic accident frequency and potential influencing factors such as time,road space structure and traffic running environment,nine independent variables were selected from the aspects of time and space,two kinds of section divided methods were adopted,which were fixed-length consistent segment and longitudinal grade consistent segment,and the hourly,weekly and monthly distribution models of traffic accident frequency were constructed.A typical accident-prone section was selected,and Poisson regression model,negative binomial regression model,zero-inflated Poisson regression model and zero-inflated negative binomial regression model were used to fit hourly,weekly and monthly distribution models respectively.The best forms of three models were determined,and the temporal-spatial analysis model of traffic accident frequency was established based on the goodness of fit test.Analysis result shows that the fitting effect of negative binomial regression model is better for traffic accident hourly and monthly distribution models based on fixed-length consistent segment from the views of AIC and BIC,and the fitting effect of Poisson regression model is better for other models.The prediction errors of traffic accident hourly,weekly and monthly distribution model based on fixed-length consistent segment are less than those of longitudinal grade consistent segment.4 tabs,15 refs.
Keywords:traffic engineering  traffic accident frequency  temporal-spatial analysis model  Poisson regression model  negative binomial regression model  zero-inflated Poisson regression model  zero-inflated negative binomial regression model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号