首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Yaw rate and side-slip control considering vehicle longitudinal dynamics
Authors:R Tchamna  I Youn
Institution:1. School of Mechanical and Aerospace Engineering, Gyeongsang National University, Gyeongnam, 660-701, Korea
Abstract:Most conventional vehicle stability controllers operate on the basis of many simplifying assumptions, such as a small steering wheel angle, constant longitudinal velocity and a small side-slip angle. This paper presents a new approach for controlling the yaw rate and side-slip of a vehicle without neglecting its longitudinal dynamics and without making simplifying assumptions about its motion. A sliding-mode controller is used to develop a differential braking controller for tracking a desired vehicle yaw rate for a given steering wheel angle, while keeping the vehicle’s side-slip angle as small as possible. The trade-off that exists between yaw rate and side-slip control is described. Conventional and proposed algorithms are presented, and the effectiveness of the proposed controller is investigated using a seven-degree-of-freedom vehicle dynamics model. The simulation results demonstrate that the proposed controller is more effective than the conventional one.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号