首页 | 本学科首页   官方微博 | 高级检索  
     

快速多极多域虚边界元法解不同材料组合结构
引用本文:蒋彦涛,许强,张志佳. 快速多极多域虚边界元法解不同材料组合结构[J]. 华东交通大学学报, 2008, 25(3): 18-24
作者姓名:蒋彦涛  许强  张志佳
作者单位:同济大学,建筑工程系,上海,200092;同济大学,建筑工程系,上海,200092;同济大学,建筑工程系,上海,200092
摘    要:将快速多极算法和广义极小残值法(GMRES)的基本思想运用于虚边界元法的方程求解中,并构造了多域组合问题虚边界元法的快速多极展开的实施思路,且将此方法用于不同材料组合结构问题的求解.采用此方法能够使得原问题方程组求解的计算耗时量和储存量降至与所求问题的计算自由度数成线性比例.数值算例验证了方法的可行性、计算精度和计算效率.

关 键 词:快速多极算法  广义极小残值法  虚边界元法  组合结构/弹性力学

Fast Multipole Multi-domain VBEM for Solving the Composite Structures of Different Materials
JIANG Yan-tao,XU Qiang,ZHANG Zhi-jia. Fast Multipole Multi-domain VBEM for Solving the Composite Structures of Different Materials[J]. Journal of East China Jiaotong University, 2008, 25(3): 18-24
Authors:JIANG Yan-tao  XU Qiang  ZHANG Zhi-jia
Affiliation:(Department of Building Engineering, Tongii University, Shanghai 200092, China)
Abstract:The main theory of generalized minimal residual algorithm(GMRES) and fast multipole method(FMM) are applied into the numerical solution of equations about virtual boundary element method(VBEM) to form the idea about the fast multipole expansion of multi-domain VBEM,which is applied to solve the composite structures of different materials.With the method,the complexities of operation and memory about solution of the equations would be made to be of linear proportion to the freedoms of the problem.Numerical examples are presented to demonstrate the feasibility,accuracy and efficiency of the method.
Keywords:fast multipole method(FMM)  generalized minimal residual algorithm(GMRES)  virtual boundary element method(VBEM)  composite structures/elasticity
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《华东交通大学学报》浏览原始摘要信息
点击此处可从《华东交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号