首页 | 本学科首页   官方微博 | 高级检索  
     


Short-term travel time prediction
Affiliation:1. Noblis, 600 Maryland Avenue, S.W., Suite 700E, Washington, DC 20024, USA;2. Department of Civil and Environmental Engineering, Maryland Transportation Institute, University of Maryland, 1173 Martin Hall, College Park, MD 20742, USA
Abstract:Effective prediction of travel times is central to many advanced traveler information and transportation management systems. In this paper we propose a method to predict freeway travel times using a linear model in which the coefficients vary as smooth functions of the departure time. The method is straightforward to implement, computationally efficient and applicable to widely available freeway sensor data.We demonstrate the effectiveness of the proposed method by applying the method to two real-life loop detector data sets. The first data set––on I-880––is relatively small in scale, but very high in quality, containing information from probe vehicles and double loop detectors. On this data set the prediction error ranges from 5% for a trip leaving immediately to 10% for a trip leaving 30 min or more in the future. Having obtained encouraging results from the small data set, we move on to apply the method to a data set on a much larger spatial scale, from Caltrans District 12 in Los Angeles. On this data set, our errors range from about 8% at zero lag to 13% at a time lag of 30 min or more. We also investigate several extensions to the original method in the context of this larger data set.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号