首页 | 本学科首页   官方微博 | 高级检索  
     

城市轨道交通客流预测宏观指标统计分析这篇中文摘要写得很空泛,不太容易看出论文要点
引用本文:戢小辉,安栓庄,俞懿宸,谢禹磊. 城市轨道交通客流预测宏观指标统计分析这篇中文摘要写得很空泛,不太容易看出论文要点[J]. 都市快轨交通, 2017, 0(6): 39-46
作者姓名:戢小辉  安栓庄  俞懿宸  谢禹磊
作者单位:中铁第四勘察设计院集团有限公司,武汉 430063;中国地铁工程咨询有限责任公司,北京 100037;武汉地铁运营有限公司,武汉 430063
基金项目:国家自然科学基金项目(71103148)
摘    要:城市轨道交通客流预测作为需求分析的有效技术手段,其预测结果的可信度和有效性将直接影响决策的精准度,重要性不言而喻。通过对北京、上海、广州、深圳、成都、南京等20余座城市的轨道交通现状运营数据进行全面整理与归纳,系统阐述网络客流、线路客流、车站客流的诸多特征,从负荷强度、网络平均乘距、线路平均运距、换乘系数、断面高峰小时系数、断面不均衡性、换乘客流量级分布、车站超高峰系数等客流预测关键技术指标进行特征探讨与规律总结,以期协助模型工作者更好地把握预测结果的合理性。

关 键 词:城市轨道交通;客流预测;客流特征;成长规律

Macroscopic Index for Rail Transit Passenger Volume Forecasting
JI Xiaohui,AN Shuanzhuang,YU Yichen,XIE Yulei. Macroscopic Index for Rail Transit Passenger Volume Forecasting[J]. Urban Rapid Rail Transit, 2017, 0(6): 39-46
Authors:JI Xiaohui  AN Shuanzhuang  YU Yichen  XIE Yulei
Abstract:Passenger flow forecasting is an effective means for demand analysis of urban rail transit since the reliability and validity of passenger volume forecasting results will exert influences on the accuracy of decisions. This article states the characteristics of passenger flows in term of network, lines and stations through sorting out the operational data of urban rail transit systems in over 20 cities, including Beijing, Shanghai, etc, in China. The key indicators of load intensity, average network ridership distance, average line ridership distance, transfer coefficient, section peak hour factor, section non-equilibrium factor, magnitude distribution of transfer flow, station extra peak hour factor are analyzed. The characteristics of these indicators are discussed and rules are summarized to help transport modelers understand the rationality of the forecasting results.
Keywords:urban rail transit   passenger flow forecast   passenger flow characteristics   rules of growth
点击此处可从《都市快轨交通》浏览原始摘要信息
点击此处可从《都市快轨交通》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号