摘 要: | 锂离子电池剩余容量估计是电动汽车电池管理系统核心技术之一。利用支持向量回归(Support Vector Regression,SVR)进行锂离子电池剩余容量的估计,其参数的选择直接决定着支持向量回归的性能。提出利用粒子群算法(Particle Swarm Optimization,PSO)和遗传算法(Genetic Algorithm,GA)对支持向量机进行参数寻优,进行锂电池剩余容量估计分析及优化参数分析;并与基于网格搜索法(Grid Search,GS)的支持向量机和标准支持向量机估计结果作对比。结果表明,GASVR和PSO-SVR均能进行高精度的锂电池剩余容量估计,尤以遗传算法优化性能最佳。
|