首页 | 本学科首页   官方微博 | 高级检索  
     

利用残余力概念进行结构损伤识别
引用本文:张增军,张猛,张子富. 利用残余力概念进行结构损伤识别[J]. 中国铁道科学, 2006, 27(4): 68-70
作者姓名:张增军  张猛  张子富
作者单位:1. 同济大学,建筑工程系,上海,200092
2. 同济大学,建筑工程系,上海,200092;郑州大学,土木工程学院,河南,郑州,450002
3. 国家电力建设研究所,北京,100055
摘    要:提出一种利用残余力进行结构损伤识别方法。用刚度损伤系数将有限元模型参数化来描述结构的损伤。用特征值和特征向量预测算法构造目标函数,利用两点交叉算子的二进制代码的遗传算法反复迭代优化刚度损伤系数,获得待测结构的损伤系数、损伤位置与损伤程度的信息。通过一个平面桁架对该方法进行验证,结果表明:利用残余力概念进行损伤识别所得结构的损伤系数与理论值很接近。该方法能够较准确地判断结构的损伤位置和损伤程度。

关 键 词:无损检测  损伤识别  残余力  目标函数  遗传算法  建筑结构
文章编号:1001-4632(2006)04-0068-03
收稿时间:2005-11-20
修稿时间:2005-11-20

Method for Structure Damage Detection by Using the Concept of Residual Forces
ZHANG Zeng-jun,Zhang Meng,ZHANG Zi-fu. Method for Structure Damage Detection by Using the Concept of Residual Forces[J]. China Railway Science, 2006, 27(4): 68-70
Authors:ZHANG Zeng-jun  Zhang Meng  ZHANG Zi-fu
Affiliation:1. Department of Building Engineering, Tongji University, Shanghai 200092, China; 2. School of Civil Engineering, Zhengzhou University, Zhengzhou Henan 450002, China; 3. SG Electric Power Construction Research Institute, Beijing 100055, China
Abstract:This paper proposes a method of damage detection by using the concept of residual forces.To describe the damage in a structure,finite element models are parameterized by structural stiffness reduction parameters.An eigenvalue and eigenvector prediction algorithm along with normalized residual function is employed to formulate the objective function.Two-point crossover binary coded genetic algorithm is adopted in minimizing the objective and optimum set of stiffness reduction parameters are predicted.To illustrate the method,we use a plane truss as an example.And the result shows,the damage coefficients of the structure obtained from the method for structure damage detection by using the concept of residual force are very close to theoretical values.This method can estimate the damage location and degree of the structure with better precision.
Keywords:Non-destructive detection  Damage identification  Residual force  Objective function  Genetic algorithm  Architectural construction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号