首页 | 本学科首页   官方微博 | 高级检索  
     

基于压缩感知和字典学习的背景差分法
引用本文:郭厚焜,吴峰,黄萍. 基于压缩感知和字典学习的背景差分法[J]. 华东交通大学学报, 2012, 0(1): 43-47
作者姓名:郭厚焜  吴峰  黄萍
作者单位:华东交通大学信息工程学院
基金项目:江西省研究生创新专项基金项目(YC2011-X013)
摘    要:针对当使用背景差分法时,背景存在突变和渐变、图像数据的冗余和伪前景对目标检测的干扰等问题,提出一种基于稀疏表示和字典学习的背景差分法。该方法首先训练视频流得到其数据字典,并根据数据字典学习与稀疏表示理论建立背景模型,可以有效减少数据的冗余。然后根据目标及其邻域的密集度进行目标分割,以排除前景的干扰。最后再根据数据字典的更新算法,有效解决了背景的突变和渐变问题。实验结果表明,该方法具有可行性。

关 键 词:稀疏表示  字典学习  背景差分  前景分割

Background Subtraction Based on Sparse Representation and Dictionary Learning
Guo Houkun,Wu Feng,Huang Ping. Background Subtraction Based on Sparse Representation and Dictionary Learning[J]. Journal of East China Jiaotong University, 2012, 0(1): 43-47
Authors:Guo Houkun  Wu Feng  Huang Ping
Affiliation:(School of Information Engineering,East China Jiaotong University,Nanchang 330013,China)
Abstract:In this paper,we propose a CS-based background subtraction approach based on the theory of sparse representation and dictionary learning,to handle sudden and gradual background changes and the redundancy of excessive image data and the interference of prospect.This method gets their data dictionary according to the video stream and establishes the background model based on the theory of dictionary learning and sparse representation to effectively reduce data redundancy.Then,the moving objects correctly depending on the intensity of the target and its neighbors are segmented so as to rule out interference of the foreground.Finally,the problem of sudden and gradual background changes is solved through the update algorithm of data dictionary.Experiments show that this method is feasible.
Keywords:sparse representation  dictionary learning  background subtraction  foreground segmentation
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号