首页 | 本学科首页   官方微博 | 高级检索  
     

基于松散型小波神经网络的某隧道仰坡变形趋势研究
引用本文:隆然,庞建成. 基于松散型小波神经网络的某隧道仰坡变形趋势研究[J]. 路基工程, 2016, 0(3): 25-30. DOI: 10.13379/j.issn.1003-8825.2016.03.06
作者姓名:隆然  庞建成
作者单位:1.中交第二公路勘察设计研究院有限公司, 武汉 430056
基金项目:交通运输部西部交通科技项目(2011318493720)
摘    要:针对某隧道洞口仰坡的稳定性问题,首先选取松散型小波神经网络对仰坡的沉降变形进行预测,再利用秩相关系数检验和Mann-Kendall检验对仰坡的变形趋势进行判断;结果表明:不同小波函数的去噪效果不一致,其中监测点#5采用db4小波的去噪效果最好,而监测点#6则是采用db7小波的去噪效果最好;另外,秩相关系数检验和Mann-Kendall检验在仰坡变形趋势的判断中具有很好的一致性,均得出两监测点的变形趋势是往减小方向发展,仰坡变形趋于稳定,可以安全地进行后期施工。

关 键 词:仰坡   BP神经网络   秩相关系数   小波去噪   Mann-Kendall检验
收稿时间:2019-11-11

Research on Deformation Trend of Tunnel Upward Slope Based on Loose-type Wavelet Neural Network
Abstract:Aiming at the stability of upward slope at the tunnel entrance, the loose-type wavelet neural network is selected to predict the settlement deformation; the rank correlation coefficient test and Mann-Kendall test are performed to judge the deformation trend of upward slope. The results show that the denoising effect of different wavelet functions is inconsistent; wherein, the denoising effect of db4 wavelet at monitoring points #5 is the best, and the denoising effect of db7 wavelet at the monitoring point #6 is the best. In addition, the rank correlation coefficient test and the Mann-Kendall test have very good consistency in the judgment of the deformation trend of upward slope. The deformation trend of two monitoring points is gradually decreased; and the deformation of upward slope is stable, so later construction can be done in a safe manner.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《路基工程》浏览原始摘要信息
点击此处可从《路基工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号