首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Estimation of wheel–rail friction for vehicle certification
Abstract:In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel–rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel–rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel–rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m?1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work.
Keywords:wheel–rail friction coefficient  vehicle certification  vehicle dynamics  curve radius  track irregularity  wheel–rail force  contact position  creep  spin  angle of attack  measurement  simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号