首页 | 本学科首页   官方微博 | 高级检索  
     检索      


H 2 optimal control of disturbance-delayed systems with application to vehicle suspensions
Abstract:Optimal control of systems with time delays among disturbances, such as vehicle suspensions, is a relatively simple but long-standing problem in time-delayed control. We consider the exact H 2 optimal control of systems with time-delayed disturbances and develop a computationally efficient approach for controller synthesis. We extend the Lyapunov-based H 2 norm computation to systems with time-delayed disturbances and then derive a concise formula to explicitly evaluate the sensitivity of the system H 2 norm with respect to controller gains. Thence, a set of necessary conditions for H 2 optimal control of such systems using static output feedback are obtained in the form of algebraic equations. Gradient-based methods are adapted to optimize the controller gains. The method is also extended to reduced-order and decentralized control. As an application, a passive suspension system for an eight-DOF four-wheel vehicle is designed via structured H 2 optimization. The results are compared with those of a design based on a Pade expansion for the time delays and a design obtained by neglecting the disturbance delays.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号