首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-fragile multi-objective static output feedback control of vehicle active suspension with time-delay
Abstract:This paper presents an approach to design a delay-dependent non-fragile H/L2L static output feedback (SOF) controller for active suspension with input time-delay. The control problem of quarter-car active suspension with actuator time-delay is formulated to a H/L2L control problem. By employing a delay-dependent Lyapunov function, new existence conditions of delay-dependent non-fragile SOF H controller and L2L controller are derived, respectively, in terms of the feasibility of bilinear matrix inequalities (BMIs). Then, a procedure based on linear matrix inequality optimisation and a hybrid algorithm of the particle swarm optimisation and differential evolution is used to solve an optimisation problem with BMI constraints. Design and simulation results of non-fragile H/L2L controller for active suspension show that the designed controller not only can achieve the optimal performance and stability of the closed-loop system in spite of the existence of the actuator time-delay, but also has significantly improved the non-fragility characteristics over controller perturbations.
Keywords:active suspension  actuator time-delay  linear matrix inequality  non-fragile control  static output feedback
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号